These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38258256)

  • 1. High-Performance Multi-Level Grayscale Conversion by Driving Waveform Optimization in Electrowetting Displays.
    Xu W; Yi Z; Jiang M; Wang J; Long Z; Liu L; Chi F; Wang L; Wan Q
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability Study of Multi-Level Grayscales Based on Driving Waveforms for Electrowetting Displays.
    Xu W; Yi Z; Long Z; Zhang H; Jiang J; Liu L; Chi F; Tan D; Wang H
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving Waveform Design of Electrowetting Displays Based on an Exponential Function for a Stable Grayscale and a Short Driving Time.
    Yi Z; Huang Z; Lai S; He W; Wang L; Chi F; Zhang C; Shui L; Zhou G
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32188157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Suppressing Oil Backflow Based on a Combined Driving Waveform for Electrowetting Displays.
    Long Z; Yi Z; Zhang H; Lv J; Liu L; Chi F; Shui L; Zhang C
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Multi-DC Overdriving Waveform of Electrowetting Displays for Gray Scale Consistency.
    Xu Y; Li S; Wang Z; Zhang H; Li Z; Xiao B; Guo W; Liu L; Bai P
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Separated Reset Waveform Design for Suppressing Oil Backflow in Active Matrix Electrowetting Displays.
    Liu L; Bai P; Yi Z; Zhou G
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aperture Ratio Improvement by Optimizing the Voltage Slope and Reverse Pulse in the Driving Waveform for Electrowetting Displays.
    Yi Z; Feng W; Wang L; Liu L; Lin Y; He W; Shui L; Zhang C; Zhang Z; Zhou G
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Adaptive Display System for Electrowetting Displays Based on Alternating Current and Direct Current.
    Li S; Xu Y; Zhan Z; Du P; Liu L; Li Z; Wang H; Bai P
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Driving System for Fast and Precise Gray-Scale Response Based on Amplitude-Frequency Mixed Modulation in TFT Electrowetting Displays.
    Yi Z; Liu L; Wang L; Li W; Shui L; Zhou G
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driving Waveform Design with Rising Gradient and Sawtooth Wave of Electrowetting Displays for Ultra-Low Power Consumption.
    Li W; Wang L; Zhang T; Lai S; Liu L; He W; Zhou G; Yi Z
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32012871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Driving Method for Reducing Oil Film Splitting in Electrowetting Displays.
    Zeng W; Yi Z; Zhao Y; Wang L; Zhang J; Zhou X; Liu L; Chi F; Yang J; Zhang C
    Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving Waveform Design of Electrophoretic Display Based on Optimized Particle Activation for a Rapid Response Speed.
    He W; Yi Z; Shen S; Huang Z; Liu L; Zhang T; Li W; Wang L; Shui L; Zhang C; Zhou G
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32423142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-Electrode Pixel Structure for Quick-Response Electrowetting Displays.
    Tian L; Lai S; Zhang T; Li W; Tang B; Zhou G
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Suppressing Charge Trapping Based on a Combined Driving Waveform with an AC Reset Signal for Electro-Fluidic Displays.
    Long Z; Yi Z; Zhang H; Liu L; Shui L
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil Conductivity, Electric-Field-Induced Interfacial Charge Effects, and Their Influence on the Electro-Optical Response of Electrowetting Display Devices.
    Jiang C; Tang B; Xu B; Groenewold J; Zhou G
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Powered Colorful Dynamic Electrowetting Display Systems Based on Triboelectricity.
    Dai X; Yang J; Shu C; Liang Q; Han J; Wu Y; Chen M; Cao Y; Ju X; Sun H; Huang LB; Zhou G
    Small; 2024 Jul; 20(27):e2310359. PubMed ID: 38385806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Fabrication and Measurement of Full-Color Reflective Electrowetting Displays.
    Yang G; Wang B; Chang Z; Liu Q; Liu L
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on Hydrodynamic Characteristics of Electronic Paper Pixels Based on Electrowetting.
    Chen M; Lin S; Mei T; Xie Z; Lin J; Lin Z; Guo T; Tang B
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fast-Response Driving Waveform Design Based on High-Frequency Voltage for Three-Color Electrophoretic Displays.
    Zhang H; Yi Z; Liu L; Chi F; Hu Y; Huang S; Miao Y; Wang L
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Fabrication and Testing Processes for Three-Layer Multi-Color Segmented Electrowetting Display.
    Yang G; Tang B; Yuan D; Henzen A; Zhou G
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31126076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.