These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38258328)

  • 1. Synthetically accessible de novo design using reaction vectors: Application to PARP1 inhibitors.
    Ghiandoni GM; Flanagan SR; Bodkin MJ; Nizi MG; Galera-Prat A; Brai A; Chen B; Wallace JEA; Hristozov D; Webster J; Manfroni G; Lehtiö L; Tabarrini O; Gillet VJ
    Mol Inform; 2024 Apr; 43(4):e202300183. PubMed ID: 38258328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis and evaluation of potential inhibitors for poly(ADP-ribose) polymerase members 1 and 14.
    Kam CM; Tauber AL; Levonis SM; Schweiker SS
    Future Med Chem; 2020 Dec; 12(24):2179-2190. PubMed ID: 33225736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing reaction-based de novo design using a multi-label reaction class recommender.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    J Comput Aided Mol Des; 2020 Jul; 34(7):783-803. PubMed ID: 32112286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of disaccharide nucleoside analogues as potential poly(ADP-ribose) polymerase-1 inhibitors.
    Zheng M; Mex M; Götz KH; Marx A
    Org Biomol Chem; 2018 Nov; 16(46):8904-8907. PubMed ID: 30203829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARP1: A Promising Target for the Development of PARP1-based Candidates for Anticancer Intervention.
    Zhu X; Ma X; Hu Y
    Curr Med Chem; 2016; 23(17):1756-74. PubMed ID: 25245372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target.
    Li J; Li Y; Lu F; Liu L; Ji Q; Song K; Yin Q; Lerner RA; Yang G; Xu H; Ma P
    Biochem Biophys Res Commun; 2020 Dec; 533(2):241-248. PubMed ID: 32381359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of some barbituric and 1,3-dimethylbarbituric acid derivatives: A non-classical scaffold for potential PARP1 inhibitors.
    Eldin A Osman E; Hanafy NS; George RF; El-Moghazy SM
    Bioorg Chem; 2020 Nov; 104():104198. PubMed ID: 32920355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update.
    Jain PG; Patel BD
    Eur J Med Chem; 2019 Mar; 165():198-215. PubMed ID: 30684797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule.
    Zhao Q; Lan T; Su S; Rao Y
    Chem Commun (Camb); 2019 Jan; 55(3):369-372. PubMed ID: 30540295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Synthesis and Activity Evaluation of New Phthalazinone PARP Inhibitors.
    Huang M; Ren J; Wang Y; Chen X; Yang J; Tang T; Yang Z; Li X; Ji M; Cai J
    Chem Pharm Bull (Tokyo); 2021; 69(7):620-629. PubMed ID: 34193711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avoid the trap: Targeting PARP1 beyond human malignancy.
    Kim C; Chen C; Yu Y
    Cell Chem Biol; 2021 Apr; 28(4):456-462. PubMed ID: 33657415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP1: Structural insights and pharmacological targets for inhibition.
    Spiegel JO; Van Houten B; Durrant JD
    DNA Repair (Amst); 2021 Jul; 103():103125. PubMed ID: 33940558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis and biological evaluation of novel molecules as potent PARP-1 inhibitors.
    Shen H; Ge Y; Wang J; Li H; Xu Y; Zhu Q
    Bioorg Med Chem Lett; 2021 Sep; 47():128169. PubMed ID: 34091044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of benzodiazepines as brain penetrating PARP-1 inhibitors.
    Yu J; Gou W; Shang H; Cui Y; Sun X; Luo L; Hou W; Sun T; Li Y
    J Enzyme Inhib Med Chem; 2022 Dec; 37(1):952-972. PubMed ID: 35317687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer.
    Fu L; Wang S; Wang X; Wang P; Zheng Y; Yao D; Guo M; Zhang L; Ouyang L
    Sci Rep; 2016 Dec; 6(1):3. PubMed ID: 28442756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy.
    Chen W; Guo N; Qi M; Dai H; Hong M; Guan L; Huan X; Song S; He J; Wang Y; Xi Y; Yang X; Shen Y; Su Y; Sun Y; Gao Y; Chen Y; Ding J; Tang Y; Ren G; Miao Z; Li J
    Eur J Med Chem; 2017 Sep; 138():514-531. PubMed ID: 28692916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of novel PARP-1 inhibitors based on pyridopyridazinone scaffold.
    Elmasry GF; Aly EE; Awadallah FM; El-Moghazy SM
    Bioorg Chem; 2019 Jun; 87():655-666. PubMed ID: 30952061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic comparison of ligand-based and structure-based virtual screening methods on poly (ADP-ribose) polymerase-1 inhibitors.
    Zhao Y; Wang XG; Ma ZY; Xiong GL; Yang ZJ; Cheng Y; Lu AP; Huang ZJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based design of new poly (ADP-ribose) polymerase (PARP-1) inhibitors.
    Chadha N; Jaggi AS; Silakari O
    Mol Divers; 2017 Aug; 21(3):655-660. PubMed ID: 28653128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RENATE: A Pseudo-retrosynthetic Tool for Synthetically Accessible de novo Design.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    Mol Inform; 2022 Apr; 41(4):e2100207. PubMed ID: 34750989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.