These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38258957)

  • 1. LinFlo-Net: A Two-Stage Deep Learning Method to Generate Simulation Ready Meshes of the Heart.
    Narayanan A; Kong F; Shadden S
    J Biomech Eng; 2024 Jul; 146(7):. PubMed ID: 38258957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep-learning approach for direct whole-heart mesh reconstruction.
    Kong F; Wilson N; Shadden S
    Med Image Anal; 2021 Dec; 74():102222. PubMed ID: 34543913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-Specific Heart Geometry Modeling for Solid Biomechanics Using Deep Learning.
    Pak DH; Liu M; Kim T; Liang L; Caballero A; Onofrey J; Ahn SS; Xu Y; McKay R; Sun W; Gleason R; Duncan JS
    IEEE Trans Med Imaging; 2024 Jan; 43(1):203-215. PubMed ID: 37432807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.
    Lamata P; Niederer S; Nordsletten D; Barber DC; Roy I; Hose DR; Smith N
    Med Image Anal; 2011 Dec; 15(6):801-13. PubMed ID: 21788150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Whole Heart Mesh Generation From Patient Images for Computational Simulations.
    Kong F; Shadden SC
    IEEE Trans Med Imaging; 2023 Feb; 42(2):533-545. PubMed ID: 36327186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Spherical Mapping of Cortical Surface Meshes Using Deep Unsupervised Learning.
    Zhao F; Wu Z; Wang L; Lin W; Li G
    Med Image Comput Comput Assist Interv; 2022 Sep; 13436():163-173. PubMed ID: 37325260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures.
    Couteau B; Payan Y; Lavallée S
    J Biomech; 2000 Aug; 33(8):1005-9. PubMed ID: 10828331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of deep learning-based lesion segmentation on failure load calculations of metastatic femurs using finite element analysis.
    Ataei A; Eggermont F; Verdonschot N; Lessmann N; Tanck E
    Bone; 2024 Feb; 179():116987. PubMed ID: 38061504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.
    Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for biomechanical modeling of facial tissue deformation in orthognathic surgical planning.
    Lampen N; Kim D; Fang X; Xu X; Kuang T; Deng HH; Barber JC; Gateno J; Xia J; Yan P
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):945-952. PubMed ID: 35362849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Based Parameterization of Diffeomorphic Image Registration for Cardiac Image Segmentation.
    Sheikhjafari A; Krishnaswamy D; Noga M; Ray N; Punithakumar K
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):800-807. PubMed ID: 37220045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficient Bloch simulation of magnetic resonance imaging sequences based on deep learning.
    Huang H; Yang Q; Wang J; Zhang P; Cai S; Cai C
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36921351
    [No Abstract]   [Full Text] [Related]  

  • 16. Triangulated manifold meshing method preserving molecular surface topology.
    Chen M; Tu B; Lu B
    J Mol Graph Model; 2012 Sep; 38():411-8. PubMed ID: 23117290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesh adaptation for improving elasticity reconstruction using the FEM inverse problem.
    Goksel O; Eskandari H; Salcudean SE
    IEEE Trans Med Imaging; 2013 Feb; 32(2):408-18. PubMed ID: 23192522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Semi-automatic Pipeline for Generation of Large Cohorts of Four-Chamber Heart Meshes.
    Strocchi M; Rodero C; Roney CH; Mendonca Costa C; Plank G; Lamata P; Niederer SA
    Methods Mol Biol; 2024; 2735():117-127. PubMed ID: 38038846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of hyperelastic materials in real-time using deep learning.
    Mendizabal A; Márquez-Neila P; Cotin S
    Med Image Anal; 2020 Jan; 59():101569. PubMed ID: 31704451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.
    van Dam PM; Gordon JP; Laks MM; Boyle NG
    J Electrocardiol; 2015; 48(6):959-65. PubMed ID: 26381797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.