BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38259040)

  • 1. A nitrogen-rich graphdiyne containing hexaazatrinaphthylene for high-performance lithium-ion batteries.
    Hou J; Wang D; Chao M; Zhang L; Liu H; Zhao Y
    Chem Commun (Camb); 2024 Feb; 60(14):1908-1911. PubMed ID: 38259040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Properties of 2D Carbon-Graphdiyne.
    Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y
    Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. π-Conjugated Hexaazatrinaphthylene-Based Azo Polymer Cathode Material Synthesized by a Reductive Homocoupling Reaction for Organic Lithium-Ion Batteries.
    Sun Z; Liu H; Shu M; Lin Z; Liu B; Li Y; Li J; Yu T; Yao H; Zhu S; Guan S
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36700-36710. PubMed ID: 35938596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion.
    Yang Z; Shen X; Wang N; He J; Li X; Wang X; Hou Z; Wang K; Gao J; Jiu T; Huang C
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2608-2617. PubMed ID: 29546976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur-rich Graphdiyne-Containing Electrochemical Active Tetrathiafulvalene for Highly Efficient Lithium Storage Application.
    Pan Q; Chen S; Wu C; Zhang Z; Li Z; Zhao Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46070-46076. PubMed ID: 31711288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nitrogen-Rich 2D sp
    Xu S; Wang G; Biswal BP; Addicoat M; Paasch S; Sheng W; Zhuang X; Brunner E; Heine T; Berger R; Feng X
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):849-853. PubMed ID: 30461145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-Doped Graphdiyne as a High-Capacity Anode Material for Lithium-Ion Batteries.
    Kong F; Yue Y; Li Q; Ren S
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-Linked Hexaazatrinaphthylene Polymer as Cathode Material in Lithium-Ion Battery.
    Wang J; En JCZ; Riduan SN; Zhang Y
    Chemistry; 2020 Feb; 26(12):2581-2585. PubMed ID: 31845409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundament and Application of Graphdiyne in Electrochemical Energy.
    Du Y; Zhou W; Gao J; Pan X; Li Y
    Acc Chem Res; 2020 Feb; 53(2):459-469. PubMed ID: 32022537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical 3D Porous Hydrogen-Substituted Graphdiyne for High-Performance Electrochemical Lithium-Ion Storage.
    Man Z; Li P; Liu S; Zhang Y; Zhu X; Ye S; Lu W; Chen W; Wu G; Bao N
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26910-26917. PubMed ID: 37246367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphdiyne-Modified Polyimide Separator: A Polysulfide-Immobilizing Net Hinders the Shuttling of Polysulfides in Lithium-Sulfur Battery.
    Wang Y; He J; Zhang Z; Liu Z; Huang C; Jin Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35738-35745. PubMed ID: 31464414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Lithium-Storage Performance via Graphdiyne/Graphene Interface by Self-Supporting Framework Synthesized.
    Hua B; Kang H; Zhong J; Zhan X; Xu L; Li J; Zheng Y; Zheng Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34332-34340. PubMed ID: 34275282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling Enhanced Lithium Ion Storage Performance of Graphdiyne by Doping with Group-15 Elements: A First-Principles Study.
    Huang Q; Li H; Ma W
    ACS Omega; 2021 Jan; 6(2):1456-1464. PubMed ID: 33490805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphdiyne/Graphene/Graphdiyne Sandwiched Carbonaceous Anode for Potassium-Ion Batteries.
    Li J; Yi Y; Zuo X; Hu B; Xiao Z; Lian R; Kong Y; Tong L; Shao R; Sun J; Zhang J
    ACS Nano; 2022 Feb; 16(2):3163-3172. PubMed ID: 35089008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage.
    Zhang S; Du H; He J; Huang C; Liu H; Cui G; Li Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8467-73. PubMed ID: 26998614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphdiyne and its Composites for Lithium-Ion and Hydrogen Storage.
    Yang K; Kang Y; Li X; Ma X; Wang X; Lu Z; Li H; Ma W; Pan L
    Chemistry; 2023 Sep; 29(53):e202301722. PubMed ID: 37382478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Columnar Lithium Deposition Guided by Graphdiyne Nanowalls toward a Stable Lithium Metal Anode.
    Zhu M; Yin C; Wang Q; Zhang Y; Zhou H; Tong L; Zhang J; Qi L
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55700-55708. PubMed ID: 36509714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Quality Pyrazinoquinoxaline-Based Graphdiyne for Efficient Gradient Storage of Lithium Ions.
    Gao L; Ge X; Zuo Z; Wang F; Liu X; Lv M; Shi S; Xu L; Liu T; Zhou Q; Ye X; Xiao S
    Nano Lett; 2020 Oct; 20(10):7333-7341. PubMed ID: 32881527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yolk-Shell Sb@Void@Graphdiyne Nanoboxes for High-Rate and Long Cycle Life Sodium-Ion Batteries.
    Liu Y; Qing Y; Zhou B; Wang L; Pu B; Zhou X; Wang Y; Zhang M; Bai J; Tang Q; Yang W
    ACS Nano; 2023 Feb; 17(3):2431-2439. PubMed ID: 36656264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bulk graphdiyne powder applied for highly efficient lithium storage.
    Zhang S; Liu H; Huang C; Cui G; Li Y
    Chem Commun (Camb); 2015 Feb; 51(10):1834-7. PubMed ID: 25521092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.