These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38259162)

  • 1. Modular supersonic nozzle for the stable laser-driven electron acceleration.
    Lei Z; Jin Z; Gu YJ; Sato S; Zhidkov A; Rondepierre A; Huang K; Nakanii N; Daito I; Kando M; Hosokai T
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38259162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions.
    Lemos N; Lopes N; Dias JM; Viola F
    Rev Sci Instrum; 2009 Oct; 80(10):103301. PubMed ID: 19895054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-accelerated electron beams at 1 GeV using optically-induced shock injection.
    V Grafenstein K; Foerster FM; Haberstroh F; Campbell D; Irshad F; Salgado FC; Schilling G; Travac E; Weiße N; Zepf M; Döpp A; Karsch S
    Sci Rep; 2023 Jul; 13(1):11680. PubMed ID: 37468564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a density-tapered capillary gas cell for laser wakefield acceleration.
    Kim J; Phung VLJ; Roh K; Kim M; Kang K; Suk H
    Rev Sci Instrum; 2021 Feb; 92(2):023511. PubMed ID: 33648054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection.
    Wu Y; Ji L; Geng X; Yu Q; Wang N; Feng B; Guo Z; Wang W; Qin C; Yan X; Zhang L; Thomas J; Hützen A; Pukhov A; Büscher M; Shen B; Li R
    Phys Rev E; 2019 Oct; 100(4-1):043202. PubMed ID: 31770946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of miniature supersonic nozzles for microparticle acceleration: a numerical study.
    Liu Y
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1814-21. PubMed ID: 17926679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supersonic gas-jet characterization with interferometry and Thomson scattering on the OMEGA Laser System.
    Hansen AM; Haberberger D; Katz J; Mastrosimone D; Follett RK; Froula DH
    Rev Sci Instrum; 2018 Oct; 89(10):10C103. PubMed ID: 30399792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.
    Ekerfelt H; Hansson M; Gallardo González I; Davoine X; Lundh O
    Sci Rep; 2017 Sep; 7(1):12229. PubMed ID: 28947789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator.
    Chang CL; Hsieh CT; Ho YC; Chen YS; Lin JY; Wang J; Chen SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036402. PubMed ID: 17500801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets.
    Tomkus V; Girdauskas V; Dudutis J; Gečys P; Stankevič V; Račiukaitis G; Gallardo González I; Guénot D; Svensson JB; Persson A; Lundh O
    Sci Rep; 2020 Oct; 10(1):16807. PubMed ID: 33033319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasimonoenergetic electron beam generation by using a pinholelike collimator in a self-modulated laser wakefield acceleration.
    Hafz N; Hur MS; Kim GH; Kim C; Ko IS; Suk H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016405. PubMed ID: 16486286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetric and asymmetric shocked gas jets for laser-plasma experiments.
    Rovige L; Huijts J; Vernier A; Andriyash I; Sylla F; Tomkus V; Girdauskas V; Raciukaitis G; Dudutis J; Stankevic V; Gecys P; Faure J
    Rev Sci Instrum; 2021 Aug; 92(8):083302. PubMed ID: 34470418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, manufacturing, evaluation, and performance of a 3D-printed, custom-made nozzle for laser wakefield acceleration experiments.
    Andrianaki G; Grigoriadis A; Skoulakis A; Tazes I; Mancelli D; Fitilis I; Dimitriou V; Benis EP; Papadogiannis NA; Tatarakis M; Nikolos IK
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37855698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope.
    Maxa J; Šabacká P; Mazal J; Neděla V; Binar T; Bača P; Talár J; Bayer R; Čudek P
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the characteristics of injected and accelerated electron bunch in corrugated plasma channel by temporally asymmetric laser pulses.
    Sedaghat M; Amouye Foumani A; Niknam AR
    Sci Rep; 2022 May; 12(1):8115. PubMed ID: 35581299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A supersonic target jet mill based on the entrainment of annular supersonic flow.
    Zhang Z; Lin J; Tao Y; Guo Q; Zuo J; Lu B; Liu G; Li J
    Rev Sci Instrum; 2018 Aug; 89(8):085104. PubMed ID: 30184694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM).
    Maxa J; Neděla V; Šabacká P; Binar T
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator.
    Hsieh CT; Huang CM; Chang CL; Ho YC; Chen YS; Lin JY; Wang J; Chen SY
    Phys Rev Lett; 2006 Mar; 96(9):095001. PubMed ID: 16606269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nozzle for high-density supersonic gas jets at elevated temperatures.
    Heyl CM; Schoun SB; Porat G; Green H; Ye J
    Rev Sci Instrum; 2018 Nov; 89(11):113114. PubMed ID: 30501290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-phase-matched laser wakefield acceleration of electrons in an axially density-modulated plasma channel.
    Sedaghat M; Barzegar S; Niknam AR
    Sci Rep; 2021 Jul; 11(1):15207. PubMed ID: 34312453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.