These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38259168)

  • 1. A data-driven approach for timescale decomposition of biochemical reaction networks.
    Akbari A; Haiman ZB; Palsson BO
    mSystems; 2024 Feb; 9(2):e0100123. PubMed ID: 38259168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-driven approach for timescale decomposition of biochemical reaction networks.
    Akbari A; Haiman ZB; Palsson BO
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An encompassed representation of timescale hierarchies in first-order reaction network.
    Nagahata Y; Kobayashi M; Toda M; Maeda S; Taketsugu T; Komatsuzaki T
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2317781121. PubMed ID: 38758700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down analysis of temporal hierarchy in biochemical reaction networks.
    Jamshidi N; Palsson BØ
    PLoS Comput Biol; 2008 Sep; 4(9):e1000177. PubMed ID: 18787685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timescale analysis of rule-based biochemical reaction networks.
    Klinke DJ; Finley SD
    Biotechnol Prog; 2012; 28(1):33-44. PubMed ID: 21954150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulating genome-scale kinetic models in the post-genome era.
    Jamshidi N; Palsson BØ
    Mol Syst Biol; 2008; 4():171. PubMed ID: 18319723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions.
    Thomas P; Straube AV; Grima R
    BMC Syst Biol; 2012 May; 6():39. PubMed ID: 22583770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.
    Kastrup CJ; Runyon MK; Lucchetta EM; Price JM; Ismagilov RF
    Acc Chem Res; 2008 Apr; 41(4):549-58. PubMed ID: 18217723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layered decomposition for the model order reduction of timescale separated biochemical reaction networks.
    Prescott TP; Papachristodoulou A
    J Theor Biol; 2014 Sep; 356():113-22. PubMed ID: 24732263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphical approach to model reduction for nonlinear biochemical networks.
    Holland DO; Krainak NC; Saucerman JJ
    PLoS One; 2011; 6(8):e23795. PubMed ID: 21901136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model reduction method for biochemical reaction networks.
    Rao S; van der Schaft A; van Eunen K; Bakker BM; Jayawardhana B
    BMC Syst Biol; 2014 May; 8():52. PubMed ID: 24885656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling sequences and temporal networks with dynamic community structures.
    Peixoto TP; Rosvall M
    Nat Commun; 2017 Sep; 8(1):582. PubMed ID: 28928409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enhanced extended phenomenological kinetics method to deal with timescale disparity problem among different reaction pathways.
    Ding C; Weng J; Shen T; Xu X
    J Comput Chem; 2020 Sep; 41(24):2115-2123. PubMed ID: 32618018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Structural Kinetic Modeling To Identify Key Determinants of Stability in Reaction Networks.
    Carbonaro NJ; Thorpe IF
    J Phys Chem A; 2017 Jul; 121(26):4982-4992. PubMed ID: 28598619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Sensitive Aspects of Mars Sample Return (MSR) Science.
    Tosca NJ; Agee CB; Cockell CS; Glavin DP; Hutzler A; Marty B; McCubbin FM; Regberg AB; Velbel MA; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Pratt LM; Smith AL; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Wadhwa M; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S81-S111. PubMed ID: 34904889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical decomposition of dynamically evolving regulatory networks.
    Ay A; Gong D; Kahveci T
    BMC Bioinformatics; 2015 May; 16():161. PubMed ID: 25976669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis.
    Schwartz JM; Kanehisa M
    BMC Bioinformatics; 2006 Apr; 7():186. PubMed ID: 16584566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.