These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38259215)
1. Electron interaction with DNA constituents in aqueous phase. Parikh S; Limbachiya C Chemphyschem; 2024 Apr; 25(7):e202300916. PubMed ID: 38259215 [TBL] [Abstract][Full Text] [Related]
2. Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies. Akar A; Gümüş H; Okumuşoğlu NT Appl Radiat Isot; 2006 May; 64(5):543-50. PubMed ID: 16388951 [TBL] [Abstract][Full Text] [Related]
3. Ionization and Electron Attachment for Nucleobases in Water. Zhang Y; Xie P; Yang S; Han K J Phys Chem B; 2019 Feb; 123(6):1237-1247. PubMed ID: 30638023 [TBL] [Abstract][Full Text] [Related]
4. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). Francés-Monerris A; Segarra-Martí J; Merchán M; Roca-Sanjuán D J Chem Phys; 2015 Dec; 143(21):215101. PubMed ID: 26646889 [TBL] [Abstract][Full Text] [Related]
5. Non-covalent interactions: complexes of guanidinium with DNA and RNA nucleobases. Blanco F; Kelly B; Sánchez-Sanz G; Trujillo C; Alkorta I; Elguero J; Rozas I J Phys Chem B; 2013 Oct; 117(39):11608-16. PubMed ID: 23992551 [TBL] [Abstract][Full Text] [Related]
6. Anhydrous crystals of DNA bases are wide gap semiconductors. Maia FF; Freire VN; Caetano EW; Azevedo DL; Sales FA; Albuquerque EL J Chem Phys; 2011 May; 134(17):175101. PubMed ID: 21548706 [TBL] [Abstract][Full Text] [Related]
7. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine, and Adenine. Sen A; Hou GL; Wang XB; Dessent CE J Phys Chem B; 2015 Sep; 119(35):11626-31. PubMed ID: 26244841 [TBL] [Abstract][Full Text] [Related]
8. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine. Chen EC; Wiley JR; Chen ES Nucleosides Nucleotides Nucleic Acids; 2008 May; 27(5):506-24. PubMed ID: 18569789 [TBL] [Abstract][Full Text] [Related]
9. Cross sections of electron inelastic interactions in DNA. Tan Z; Xia Y; Liu X; Zhao M; Ji Y; Li F; Huang B Radiat Environ Biophys; 2004 Sep; 43(3):173-82. PubMed ID: 15526117 [TBL] [Abstract][Full Text] [Related]
10. The electron affinities of the radicals formed by the loss of an aromatic hydrogen atom from adenine, guanine, cytosine, uracil, and thymine. Chen ES; Chen EC; Sane N Biochem Biophys Res Commun; 1998 May; 246(1):228-30. PubMed ID: 9600097 [TBL] [Abstract][Full Text] [Related]
11. Electron transfer from nucleobase electron adducts to 5-bromouracil. Is guanine an ultimate sink for the electron in irradiated DNA? Nese C; Yuan Z; Schuchmann MN; Von Sonntag C Int J Radiat Biol; 1992 Nov; 62(5):527-41. PubMed ID: 1361510 [TBL] [Abstract][Full Text] [Related]
12. The determination of absolute electron affinities of the purines and pyrimidines in DNA and RNA from reversible reduction potentials. Wiley JR; Robinson JM; Ehdaie S; Chen EC; Chen ES; Wentworth WE Biochem Biophys Res Commun; 1991 Oct; 180(2):841-5. PubMed ID: 1719971 [TBL] [Abstract][Full Text] [Related]
13. Classification of organic molecules to obtain electron affinities from half-wave reduction potentials: cytosine, uracil, thymine, guanine and adenine. Chen ES; Chen EC; Sane N; Shulze S Bioelectrochem Bioenerg; 1999 Feb; 48(1):69-78. PubMed ID: 10228572 [TBL] [Abstract][Full Text] [Related]
14. Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions. Nachtigallová D; Hobza P; Ritze HH Phys Chem Chem Phys; 2008 Oct; 10(37):5689-97. PubMed ID: 18956103 [TBL] [Abstract][Full Text] [Related]
15. Communication: Electronic UV-Vis transient spectra of the ∙OH reaction products of uracil, thymine, cytosine, and 5,6-dihydrouracil by using the complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory. Francés-Monerris A; Merchán M; Roca-Sanjuán D J Chem Phys; 2013 Aug; 139(7):071101. PubMed ID: 23968062 [TBL] [Abstract][Full Text] [Related]
16. π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study. Kumar A; Sevilla MD J Phys Chem B; 2013 Oct; 117(39):11623-32. PubMed ID: 24000793 [TBL] [Abstract][Full Text] [Related]
17. High-resolution photoelectron spectra of the pyrimidine-type nucleobases. Fulfer KD; Hardy D; Aguilar AA; Poliakoff ED J Chem Phys; 2015 Jun; 142(22):224310. PubMed ID: 26071713 [TBL] [Abstract][Full Text] [Related]
18. Microhydration of cytosine and its radical anion: cytosine.(H2O)n (n=1-5). Kim S; Schaefer HF J Chem Phys; 2007 Feb; 126(6):064301. PubMed ID: 17313209 [TBL] [Abstract][Full Text] [Related]
19. Thermochemistry of Uracil, Thymine, Cytosine, and Adenine. Ganyecz Á; Kállay M; Csontos J J Phys Chem A; 2019 May; 123(18):4057-4067. PubMed ID: 30977653 [TBL] [Abstract][Full Text] [Related]
20. Communication: Photoactivation of nucleobase bound platinum(II) metal complexes: probing the influence of the nucleobase. Sen A; Dessent CE J Chem Phys; 2014 Dec; 141(24):241101. PubMed ID: 25554122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]