These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38259297)

  • 1. Up-regulation of ABCG1 is associated with methotrexate resistance in acute lymphoblastic leukemia cells.
    Chen Y; Fang H; Sun H; Wu X; Xu Y; Zhou BS; Li H
    Front Pharmacol; 2023; 14():1331687. PubMed ID: 38259297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methotrexate-resistant human breast cancer cell line with multiple defects, including diminished formation of methotrexate polyglutamates.
    Cowan KH; Jolivet J
    J Biol Chem; 1984 Sep; 259(17):10793-800. PubMed ID: 6206061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex vivo resistance in childhood acute lymphoblastic leukemia: Correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation.
    Jaramillo AC; Cloos J; Lemos C; Stam RW; Kaspers GJL; Jansen G; Peters GJ
    Leuk Res; 2019 Apr; 79():45-51. PubMed ID: 30849662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of an effect of breast cancer resistance protein (BCRP/ABCG2) overexpression on methotrexate polyglutamate export and folate accumulation in a human breast cancer cell line.
    Rhee MS; Schneider E
    Biochem Pharmacol; 2005 Jan; 69(1):123-32. PubMed ID: 15588721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia.
    Wojtuszkiewicz A; Peters GJ; van Woerden NL; Dubbelman B; Escherich G; Schmiegelow K; Sonneveld E; Pieters R; van de Ven PM; Jansen G; Assaraf YG; Kaspers GJ; Cloos J
    J Hematol Oncol; 2015 May; 8():61. PubMed ID: 26022503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Expression and Activation of the NF-κB Pathway Correlate with Methotrexate Resistance and Cell Proliferation in Acute Lymphoblastic Leukemia.
    Canevarolo RR; Cury NM; Yunes JA
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells.
    Moscow JA; Gong M; He R; Sgagias MK; Dixon KH; Anzick SL; Meltzer PS; Cowan KH
    Cancer Res; 1995 Sep; 55(17):3790-4. PubMed ID: 7641195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux.
    Volk EL; Rohde K; Rhee M; McGuire JJ; Doyle LA; Ross DD; Schneider E
    Cancer Res; 2000 Jul; 60(13):3514-21. PubMed ID: 10910063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The MitoNEET Ligand NL-1 Mediates Antileukemic Activity in Drug-Resistant B-Cell Acute Lymphoblastic Leukemia.
    Geldenhuys WJ; Nair RR; Piktel D; Martin KH; Gibson LF
    J Pharmacol Exp Ther; 2019 Jul; 370(1):25-34. PubMed ID: 31010844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BCL6 promotes the methotrexate-resistance by upregulating ZEB1 expression in children with acute B lymphocytic leukemia.
    Wu HB; Lv WF; Wang YX; Li YY; Guo W
    Eur Rev Med Pharmacol Sci; 2018 Aug; 22(16):5240-5247. PubMed ID: 30178847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HPRT1 activity loss is associated with resistance to thiopurine in ALL.
    Yang F; Fang H; Wang D; Chen Y; Zhai Y; Zhou BS; Li H
    Oncotarget; 2018 Jan; 9(2):2268-2278. PubMed ID: 29416770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of
    Ma KP; Sun ZJ; Shen Y; Wang YQ; Lin DD
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2023 Feb; 31(1):50-56. PubMed ID: 36765476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanism of miR-155 Promoting Drug Resistance in Childhood Acute Lymphoblastic Leukemia by Regulating Wnt/β-Catenin Signaling Pathway].
    Huang HM; Wei YJ; Wang D; Wen XM
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Apr; 30(2):418-424. PubMed ID: 35395973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of methotrexate-resistant human acute lymphoblastic leukemia cells in culture and effects of folate antagonists.
    Ohnoshi T; Ohnuma T; Takahashi I; Scanlon K; Kamen BA; Holland JF
    Cancer Res; 1982 May; 42(5):1655-60. PubMed ID: 6978176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile.
    Sorich MJ; Pottier N; Pei D; Yang W; Kager L; Stocco G; Cheng C; Panetta JC; Pui CH; Relling MV; Cheok MH; Evans WE
    PLoS Med; 2008 Apr; 5(4):e83. PubMed ID: 18416598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the propensity for gene amplification between near-tetraploid and near-diploid V79 clones resistant to 150 nM methotrexate.
    Hashimoto MW; Nikaido O; Kobayashi N; Chang CC; Trosko JE; Mori T
    Carcinogenesis; 1996 Mar; 17(3):389-94. PubMed ID: 8631121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of transport-mediated methotrexate resistance in human tumor cells with antibodies to the membrane carrier for methotrexate and tetrahydrofolate cofactors.
    Matherly LH; Angeles SM; Czajkowski CA
    J Biol Chem; 1992 Nov; 267(32):23253-60. PubMed ID: 1429671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of splicing-regulatory polymorphisms in ABCC2, ABCG2, and ABCB1 on methotrexate exposure in Chinese children with acute lymphoblastic leukemia.
    Li M; Kong XY; Wang SM
    Cancer Chemother Pharmacol; 2023 Jan; 91(1):77-87. PubMed ID: 36463535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methotrexate Disposition in Pediatric Patients with Acute Lymphoblastic Leukemia: What Have We Learnt From the Genetic Variants of Drug Transporters.
    Hu YH; Zhou L; Wang SS; Jing X; Guo HL; Sun F; Zhang Y; Chen F; Xu J; Ji X
    Curr Pharm Des; 2019; 25(6):627-634. PubMed ID: 30931851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus.
    Mauldin JP; Nagelin MH; Wojcik AJ; Srinivasan S; Skaflen MD; Ayers CR; McNamara CA; Hedrick CC
    Circulation; 2008 May; 117(21):2785-92. PubMed ID: 18490524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.