These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38259340)

  • 21. Studying the Spatial Distribution of Physiological Effects on BOLD Signals Using Ultrafast fMRI.
    Tong Y; Frederick BD
    Front Hum Neurosci; 2014; 8():196. PubMed ID: 24744722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMR
    Huber L; Uludağ K; Möller HE
    Neuroimage; 2019 Aug; 197():742-760. PubMed ID: 28736310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility.
    Bianciardi M; Toschi N; Polimeni JR; Evans KC; Bhat H; Keil B; Rosen BR; Boas DA; Wald LL
    Philos Trans A Math Phys Eng Sci; 2016 May; 374(2067):. PubMed ID: 27044992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease.
    Chen JJ; Uthayakumar B; Hyder F
    J Cereb Blood Flow Metab; 2022 Jul; 42(7):1139-1162. PubMed ID: 35296177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.
    Kundu P; Inati SJ; Evans JW; Luh WM; Bandettini PA
    Neuroimage; 2012 Apr; 60(3):1759-70. PubMed ID: 22209809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partitioning of physiological noise signals in the brain with concurrent near-infrared spectroscopy and fMRI.
    Tong Y; Lindsey KP; deB Frederick B
    J Cereb Blood Flow Metab; 2011 Dec; 31(12):2352-62. PubMed ID: 21811288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiac-Related Pulsatility in the Insula Is Directly Associated With Middle Cerebral Artery Pulsatility Index.
    Atwi S; Robertson AD; Theyers AE; Ramirez J; Swartz RH; Marzolini S; MacIntosh BJ
    J Magn Reson Imaging; 2020 May; 51(5):1454-1462. PubMed ID: 31667941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BOLD functional MRI in disease and pharmacological studies: room for improvement?
    Iannetti GD; Wise RG
    Magn Reson Imaging; 2007 Jul; 25(6):978-88. PubMed ID: 17499469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).
    Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J
    Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Task-related BOLD responses and resting-state functional connectivity during physiological clamping of end-tidal CO(2).
    Madjar C; Gauthier CJ; Bellec P; Birn RM; Brooks JC; Hoge RD
    Neuroimage; 2012 May; 61(1):41-9. PubMed ID: 22418394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity limitations of high-resolution perfusion-based human fMRI at 7 Tesla.
    de Zwart JA; van Gelderen P; Duyn JH
    Magn Reson Imaging; 2021 Dec; 84():135-144. PubMed ID: 34624401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and reduction of cardiac- and respiratory-induced noise as a function of the sampling rate (TR) in fMRI.
    Cordes D; Nandy RR; Schafer S; Wager TD
    Neuroimage; 2014 Apr; 89():314-30. PubMed ID: 24355483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model-based physiological noise removal in fast fMRI.
    Agrawal U; Brown EN; Lewis LD
    Neuroimage; 2020 Jan; 205():116231. PubMed ID: 31589991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating and mitigating the effects of systemic low frequency oscillations (sLFO) on resting state networks in awake non-human primates using time lag dependent methodology.
    Cao L; Kohut SJ; Frederick BD
    Front Neuroimaging; 2022; 1():1031991. PubMed ID: 37555145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase vs. magnitude information in functional magnetic resonance imaging time series: toward understanding the noise.
    Petridou N; Schäfer A; Gowland P; Bowtell R
    Magn Reson Imaging; 2009 Oct; 27(8):1046-57. PubMed ID: 19369024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors.
    Pillai JJ; Zacà D
    Technol Cancer Res Treat; 2012 Aug; 11(4):361-74. PubMed ID: 22376130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
    Kim SG; Ogawa S
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1188-206. PubMed ID: 22395207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.