These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38260708)

  • 1. Dominant negative mutations in yeast Hsp90 reveal triage decision mechanism targeting client proteins for degradation.
    Flynn JM; Joyce ME; Bolon DNA
    bioRxiv; 2024 Apr; ():. PubMed ID: 38260708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Plasticity of the Hsp90 Co-chaperone System.
    Sahasrabudhe P; Rohrberg J; Biebl MM; Rutz DA; Buchner J
    Mol Cell; 2017 Sep; 67(6):947-961.e5. PubMed ID: 28890336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Mutant Analyses Elucidate General and Client-Specific Aspects of Hsp90 Function.
    Mishra P; Flynn JM; Starr TN; Bolon DNA
    Cell Rep; 2016 Apr; 15(3):588-598. PubMed ID: 27068472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage.
    Pratt WB; Morishima Y; Peng HM; Osawa Y
    Exp Biol Med (Maywood); 2010 Mar; 235(3):278-89. PubMed ID: 20404045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The middle domain of Hsp90 acts as a discriminator between different types of client proteins.
    Hawle P; Siepmann M; Harst A; Siderius M; Reusch HP; Obermann WM
    Mol Cell Biol; 2006 Nov; 26(22):8385-95. PubMed ID: 16982694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Asymmetry in Hsp90 Dimers.
    Flynn JM; Mishra P; Bolon DN
    J Mol Biol; 2015 Sep; 427(18):2904-11. PubMed ID: 25843003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular determinants of Hsp90 dependence of Src kinase revealed by deep mutational scanning.
    Nguyen V; Ahler E; Sitko KA; Stephany JJ; Maly DJ; Fowler DM
    Protein Sci; 2023 Jul; 32(7):e4656. PubMed ID: 37167432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells.
    Samant RS; Clarke PA; Workman P
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6834-9. PubMed ID: 24760825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast.
    Reidy M; Masison DC
    J Mol Biol; 2020 Jul; 432(16):4673-4689. PubMed ID: 32565117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system.
    Mandal AK; Gibney PA; Nillegoda NB; Theodoraki MA; Caplan AJ; Morano KA
    Mol Biol Cell; 2010 May; 21(9):1439-48. PubMed ID: 20237159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The switch from client holding to folding in the Hsp70/Hsp90 chaperone machineries is regulated by a direct interplay between co-chaperones.
    Dahiya V; Rutz DA; Moessmer P; Mühlhofer M; Lawatscheck J; Rief M; Buchner J
    Mol Cell; 2022 Apr; 82(8):1543-1556.e6. PubMed ID: 35176233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.
    Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L
    PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances towards Understanding the Mechanism of Action of the Hsp90 Complex.
    Prodromou C; Bjorklund DM
    Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubility-promoting function of Hsp90 contributes to client maturation and robust cell growth.
    Pursell NW; Mishra P; Bolon DN
    Eukaryot Cell; 2012 Aug; 11(8):1033-41. PubMed ID: 22660624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical reconstitution of steroid receptor•Hsp90 protein complexes and reactivation of ligand binding.
    Murphy PJ; Franklin HR; Furukawa NW
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational Dynamics and Mechanisms of Client Protein Integration into the Hsp90 Chaperone Controlled by Allosteric Interactions of Regulatory Switches: Perturbation-Based Network Approach for Mutational Profiling of the Hsp90 Binding and Allostery.
    Verkhivker GM
    J Phys Chem B; 2022 Jul; ():. PubMed ID: 35853093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ydj1 interaction at nucleotide-binding-domain of yeast Ssa1 impacts Hsp90 collaboration and client maturation.
    Gaur D; Kumar N; Ghosh A; Singh P; Kumar P; Guleria J; Kaur S; Malik N; Saha S; Nystrom T; Sharma D
    PLoS Genet; 2022 Nov; 18(11):e1010442. PubMed ID: 36350833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.