BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38260870)

  • 1. Corrigendum: The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in
    Kim YH; Ryu JI; Devare MN; Jung J; Kim JY
    Front Microbiol; 2023; 14():1357693. PubMed ID: 38260870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in
    Kim YH; Ryu JI; Devare MN; Jung J; Kim JY
    Front Microbiol; 2023; 14():1285559. PubMed ID: 38029141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast.
    Kang WK; Kim YH; Kim BS; Kim JY
    J Microbiol; 2014 Aug; 52(8):652-8. PubMed ID: 24997552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent.
    Orlandi I; Stamerra G; Strippoli M; Vai M
    Redox Biol; 2017 Aug; 12():745-754. PubMed ID: 28412652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.
    Vall-Llaura N; Mir N; Garrido L; Vived C; Cabiscol E
    Redox Biol; 2019 Jun; 24():101229. PubMed ID: 31153040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase.
    Costa V; Amorim MA; Reis E; Quintanilha A; Moradas-Ferreira P
    Microbiology (Reading); 1997 May; 143 ( Pt 5)():1649-1656. PubMed ID: 9168613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.
    Kitagaki H; Cowart LA; Matmati N; Montefusco D; Gandy J; de Avalos SV; Novgorodov SA; Zheng J; Obeid LM; Hannun YA
    J Biol Chem; 2009 Apr; 284(16):10818-30. PubMed ID: 19179331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.
    Vall-Llaura N; Reverter-Branchat G; Vived C; Weertman N; Rodríguez-Colman MJ; Cabiscol E
    Free Radic Biol Med; 2016 Jul; 96():45-56. PubMed ID: 27085841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae.
    Kang WK; Devare M; Kim JY
    J Microbiol; 2017 Feb; 55(2):123-129. PubMed ID: 28120189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift.
    Sinha A; Pick E
    Methods Mol Biol; 2021; 2202():81-91. PubMed ID: 32857348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum: Flor Yeast Diversity and Dynamics in Biologically Aged Wines.
    David-Vaizant V; Alexandre H
    Front Microbiol; 2019; 10():363. PubMed ID: 30891013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycerol 3-phosphate dehydrogenase regulates heat shock response in Saccharomyces cerevisiae.
    Pallapati AR; Prasad S; Roy I
    Biochim Biophys Acta Mol Cell Res; 2022 May; 1869(5):119238. PubMed ID: 35150808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation.
    Sorolla MA; Nierga C; Rodríguez-Colman MJ; Reverter-Branchat G; Arenas A; Tamarit J; Ros J; Cabiscol E
    Arch Biochem Biophys; 2011 Jun; 510(1):27-34. PubMed ID: 21513696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae.
    Slattery MG; Liko D; Heideman W
    Eukaryot Cell; 2006 Feb; 5(2):313-20. PubMed ID: 16467472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfering with glycolysis causes Sir2-dependent hyper-recombination of Saccharomyces cerevisiae plasmids.
    Ralser M; Zeidler U; Lehrach H
    PLoS One; 2009; 4(4):e5376. PubMed ID: 19390637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of functional sirtuin chromatin targets in yeast.
    Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS
    Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AZF1 is a glucose-dependent positive regulator of CLN3 transcription in Saccharomyces cerevisiae.
    Newcomb LL; Hall DD; Heideman W
    Mol Cell Biol; 2002 Mar; 22(5):1607-14. PubMed ID: 11839825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sir2 is involved in the transcriptional modulation of NHP6A in Saccharomyces cerevisiae.
    Ciuffetta A; Salerno D; Camilloni G; Venditti S
    Biochem Biophys Res Commun; 2015 May; 461(1):42-6. PubMed ID: 25858320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional Control of Chronological Aging and Heterochromatin in
    McCleary DF; Rine J
    Genetics; 2017 Mar; 205(3):1179-1193. PubMed ID: 28064165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing.
    Orlandi I; Bettiga M; Alberghina L; Nyström T; Vai M
    Biochim Biophys Acta; 2010 May; 1803(5):630-8. PubMed ID: 20211662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.