BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38260954)

  • 1. An ultra-sensitive colloidal quantum dot infrared photodiode exceeding 100 000% external quantum efficiency
    Jung BK; Park T; Choi YK; Lee YM; Kim TH; Seo B; Oh S; Shim JW; Lo YH; Ng TN; Oh SJ
    Nanoscale Horiz; 2024 Feb; 9(3):487-494. PubMed ID: 38260954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Photomultiplication by Charge-Self-Trapping for High-Response Quantum Dot Infrared Photodetectors.
    Xu K; Ke L; Dou H; Xu R; Zhou W; Wei Q; Sun X; Wang H; Wu H; Li L; Xue J; Chen B; Weng TC; Zheng L; Yu Y; Ning Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14783-14790. PubMed ID: 35290029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Colloidal Quantum Dot Photodiodes via Suppressing Interface Defects.
    Lu S; Liu P; Yang J; Liu S; Yang Y; Chen L; Liu J; Liu Y; Wang B; Lan X; Zhang J; Gao L; Tang J
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12061-12069. PubMed ID: 36848237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Colloidal-Quantum-Dot Infrared Photodiode with High Photoconductive Gain.
    Tang Y; Wu F; Chen F; Zhou Y; Wang P; Long M; Zhou W; Ning Z; He J; Gong F; Zhu Z; Qin S; Hu W
    Small; 2018 Nov; 14(48):e1803158. PubMed ID: 30345615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotube Transistor with Colloidal Quantum Dot Photosensitive Gate for Ultrahigh External Quantum Efficiency Photodetector.
    Han J; Huang K; Su X; Xiao X; Gong X; Wang H; Cao J
    ACS Nano; 2023 May; 17(10):9510-9520. PubMed ID: 37166009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the Gain Mechanism in PbS Colloidal Quantum Dot Visible-Near-Infrared Photodiodes.
    Gong W; Wang P; Li J; Li J; Zhang Y
    J Phys Chem Lett; 2022 Sep; 13(35):8327-8335. PubMed ID: 36040422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors.
    Biondi M; Choi MJ; Wang Z; Wei M; Lee S; Choubisa H; Sagar LK; Sun B; Baek SW; Chen B; Todorović P; Najarian AM; Sedighian Rasouli A; Nam DH; Vafaie M; Li YC; Bertens K; Hoogland S; Voznyy O; García de Arquer FP; Sargent EH
    Adv Mater; 2021 Aug; 33(33):e2101056. PubMed ID: 34245178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Engineering to Drive High-Performance MXene/PbS Quantum Dot NIR Photodiode.
    Di Y; Ba K; Chen Y; Wang X; Zhang M; Huang X; Long Y; Liu M; Zhang S; Tang W; Huang Z; Lin T; Shen H; Meng X; Han M; Liu Q; Wang J
    Adv Sci (Weinh); 2024 Feb; 11(6):e2307169. PubMed ID: 38044286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control over Charge Carrier Mobility in the Hole Transport Layer Enables Fast Colloidal Quantum Dot Infrared Photodetectors.
    Atan O; Pina JM; Parmar DH; Xia P; Zhang Y; Gulsaran A; Jung ED; Choi D; Imran M; Yavuz M; Hoogland S; Sargent EH
    Nano Lett; 2023 May; 23(10):4298-4303. PubMed ID: 37166106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal InAs Quantum Dot-Based Infrared Optoelectronics Enabled by Universal Dual-Ligand Passivation.
    Si MJ; Jee S; Yang M; Kim D; Ahn Y; Lee S; Kim C; Bae IH; Baek SW
    Adv Sci (Weinh); 2024 Apr; 11(13):e2306798. PubMed ID: 38240455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Electrostatic-Interaction-Enhanced Photomultiplication for Ultrahigh External Quantum Efficiency of Organic Photodiodes.
    Kim J; Kang M; Lee S; So C; Chung DS
    Adv Mater; 2021 Dec; 33(52):e2104689. PubMed ID: 34677887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Near-Infrared Photodetector Based on PbS Colloidal Quantum Dots/ZnO-Nanowires Hybrid Nanostructures.
    Zhong H; Tang L; Tian P; Yu L; Zuo W; Teng KS
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterojunction bilayers serving as a charge transporting interlayer reduce the dark current and enhance photomultiplication in organic shortwave infrared photodetectors.
    Shin C; Li N; Seo B; Eedugurala N; Azoulay JD; Ng TN
    Mater Horiz; 2022 Aug; 9(8):2172-2179. PubMed ID: 35642962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Amine-Bridged Quasi-2D Perovskite/PbS Colloidal Quantum Dots Composites for High-Gain Near-Infrared Photodetectors.
    Pan W; Tan M; He Y; Wei H; Yang B
    Nano Lett; 2022 Mar; 22(6):2277-2284. PubMed ID: 35258983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoS
    Zeng P; Wang W; Han D; Zhang J; Yu Z; He J; Zheng P; Zheng H; Zheng L; Su W; Huo D; Ni Z; Zhang Y; Wu Z
    ACS Nano; 2022 Jun; 16(6):9329-9338. PubMed ID: 35687375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors.
    Kublitski J; Fischer A; Xing S; Baisinger L; Bittrich E; Spoltore D; Benduhn J; Vandewal K; Leo K
    Nat Commun; 2021 Jul; 12(1):4259. PubMed ID: 34267210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-emitting quantum dot transistors: emission at high charge carrier densities.
    Schornbaum J; Zakharko Y; Held M; Thiemann S; Gannott F; Zaumseil J
    Nano Lett; 2015 Mar; 15(3):1822-8. PubMed ID: 25652433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon Surface Passivation for Silicon-Colloidal Quantum Dot Heterojunction Photodetectors.
    Xu Q; Cheong IT; Meng L; Veinot JGC; Wang X
    ACS Nano; 2021 Nov; 15(11):18429-18436. PubMed ID: 34757719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S; Stavrinadis A; Gupta S; Konstantatos G
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Photomultiplication Photodiode with a 70 nm-Thick Active Layer Assisted by IDIC as an Efficient Molecular Sensitizer.
    Neethipathi DK; Ryu HS; Jang MS; Yoon S; Sim KM; Woo HY; Chung DS
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21211-21217. PubMed ID: 31141329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.