These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38261028)

  • 1. Translocations and inversions: major chromosomal rearrangements during Vigna (Leguminosae) evolution.
    Dias S; de Oliveira Bustamante F; do Vale Martins L; da Costa VA; Montenegro C; Oliveira ARDS; de Lima GS; Braz GT; Jiang J; da Costa AF; Benko-Iseppon AM; Brasileiro-Vidal AC
    Theor Appl Genet; 2024 Jan; 137(1):29. PubMed ID: 38261028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V. unguiculata), and common bean (Phaseolus vulgaris).
    Oliveira ARDS; Martins LDV; Bustamante FO; Muñoz-Amatriaín M; Close T; da Costa AF; Benko-Iseppon AM; Pedrosa-Harand A; Brasileiro-Vidal AC
    Chromosome Res; 2020 Dec; 28(3-4):293-306. PubMed ID: 32654079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris.
    do Vale Martins L; de Oliveira Bustamante F; da Silva Oliveira AR; da Costa AF; de Lima Feitoza L; Liang Q; Zhao H; Benko-Iseppon AM; Muñoz-Amatriaín M; Pedrosa-Harand A; Jiang J; Brasileiro-Vidal AC
    Chromosoma; 2021 Sep; 130(2-3):133-147. PubMed ID: 33909141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH.
    Vasconcelos EV; de Andrade Fonsêca AF; Pedrosa-Harand A; de Andrade Bortoleti KC; Benko-Iseppon AM; da Costa AF; Brasileiro-Vidal AC
    Chromosome Res; 2015 Jun; 23(2):253-66. PubMed ID: 25634499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligo-FISH barcode in beans: a new chromosome identification system.
    de Oliveira Bustamante F; do Nascimento TH; Montenegro C; Dias S; do Vale Martins L; Braz GT; Benko-Iseppon AM; Jiang J; Pedrosa-Harand A; Brasileiro-Vidal AC
    Theor Appl Genet; 2021 Nov; 134(11):3675-3686. PubMed ID: 34368889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytomolecular diversity among Vigna Savi (Leguminosae) subgenera.
    Dias S; Souza RC; Vasconcelos EV; Vasconcelos S; da Silva Oliveira AR; do Vale Martins L; de Oliveira Bustamante F; da Costa VA; Souza G; da Costa AF; Benko-Iseppon AM; Knytl M; Brasileiro-Vidal AC
    Protoplasma; 2024 Sep; 261(5):859-875. PubMed ID: 38467939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae.
    Montenegro C; do Vale Martins L; Bustamante FO; Brasileiro-Vidal AC; Pedrosa-Harand A
    Chromosome Res; 2022 Dec; 30(4):477-492. PubMed ID: 35715657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative molecular cytogenetic characterization of five wild
    She CW; Mao Y; Jiang XH; He CP
    Comp Cytogenet; 2020; 14(2):243-264. PubMed ID: 32676173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple and independent rearrangements revealed by comparative cytogenetic mapping in the dysploid Leptostachyus group (Phaseolus L., Leguminosae).
    Ferraz ME; Fonsêca A; Pedrosa-Harand A
    Chromosome Res; 2020 Dec; 28(3-4):395-405. PubMed ID: 33191473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High rates of structural rearrangements have shaped the chromosome evolution in dysploid Phaseolus beans.
    Nascimento T; Pedrosa-Harand A
    Theor Appl Genet; 2023 Sep; 136(10):215. PubMed ID: 37751069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-gene FISH maps and major chromosomal rearrangements in Elymus sibiricus and E. nutans.
    Liu B; Chen J; Yang Y; Shen W; Guo J; Dou Q
    BMC Plant Biol; 2023 Feb; 23(1):98. PubMed ID: 36800944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QTL analysis of domestication syndrome in zombi pea (Vigna vexillata), an underutilized legume crop.
    Dachapak S; Tomooka N; Somta P; Naito K; Kaga A; Srinives P
    PLoS One; 2018; 13(12):e0200116. PubMed ID: 30562342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of nuclear ribosomal DNA in the Phaseolus-Vigna complex.
    Goel S; Raina SN; Ogihara Y
    Mol Phylogenet Evol; 2002 Jan; 22(1):1-19. PubMed ID: 11796025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic systematics of Vigna sensu stricto in the context of Physostigma and allies.
    Horton DM; Feleke Y; Pasquet RS; Javadi F; Melville KA; Delgado-Salinas A; Thulin M; Mithen RF; Gepts P; Egan AN
    Am J Bot; 2024 Sep; 111(9):e16381. PubMed ID: 39107933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy.
    Fonsêca A; Ferraz ME; Pedrosa-Harand A
    Chromosoma; 2016 Jun; 125(3):413-21. PubMed ID: 26490170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a high density linkage map and genome dissection of bruchid resistance in zombi pea (Vigna vexillata (L.) A. Rich).
    Amkul K; Wang L; Somta P; Wang S; Cheng X
    Sci Rep; 2019 Aug; 9(1):11719. PubMed ID: 31406222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High macro-collinearity between lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) as revealed by comparative cytogenetic mapping.
    Almeida C; Pedrosa-Harand A
    Theor Appl Genet; 2013 Jul; 126(7):1909-16. PubMed ID: 23649647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length.
    Kongjaimun A; Kaga A; Tomooka N; Somta P; Shimizu T; Shu Y; Isemura T; Vaughan DA; Srinives P
    Genome; 2012 Feb; 55(2):81-92. PubMed ID: 22242703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives.
    Iwata-Otsubo A; Radke B; Findley S; Abernathy B; Vallejos CE; Jackson SA
    G3 (Bethesda); 2016 Apr; 6(4):1013-22. PubMed ID: 26865698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple intrasyntenic rearrangements and rapid speciation in voles.
    Romanenko SA; Serdyukova NA; Perelman PL; Trifonov VA; Golenishchev FN; Bulatova NS; Stanyon R; Graphodatsky AS
    Sci Rep; 2018 Oct; 8(1):14980. PubMed ID: 30297915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.