These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38261133)

  • 81. Track-structure modes in particle and heavy ion transport code system (PHITS): application to radiobiological research.
    Matsuya Y; Kai T; Sato T; Ogawa T; Hirata Y; Yoshii Y; Parisi A; Liamsuwan T
    Int J Radiat Biol; 2022; 98(2):148-157. PubMed ID: 34930091
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Monte Carlo simulation-based patient-specific QA using machine log files for line-scanning proton radiation therapy.
    Jeon C; Lee J; Shin J; Cheon W; Ahn S; Jo K; Han Y
    Med Phys; 2023 Nov; 50(11):7139-7153. PubMed ID: 37756652
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Monte Carlo calculation of beam quality correction factors in proton beams using PENH.
    Gomà C; Sterpin E
    Phys Med Biol; 2019 Sep; 64(18):185009. PubMed ID: 31416054
    [TBL] [Abstract][Full Text] [Related]  

  • 84. On the property of measurements with the PTW microLion chamber in continuous beams.
    Andersson J; Johansson E; Tölli H
    Med Phys; 2012 Aug; 39(8):4775-87. PubMed ID: 22894402
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Monte Carlo calculations of correction factors for plastic phantoms in clinical photon and electron beam dosimetry.
    Araki F; Hanyu Y; Fukuoka M; Matsumoto K; Okumura M; Oguchi H
    Med Phys; 2009 Jul; 36(7):2992-3001. PubMed ID: 19673198
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Dosimetric response of a glass dosimeter in proton beams: LET-dependence and correction factor.
    Yasui K; Omachi C; Nagata J; Toshito T; Shimizu H; Aoyama T; Hayashi N
    Phys Med; 2021 Jan; 81():147-154. PubMed ID: 33461027
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cema-based formalism for the determination of absorbed dose for high-energy photon beams.
    Hartmann GH; Andreo P; Kapsch RP; Zink K
    Med Phys; 2021 Nov; 48(11):7461-7475. PubMed ID: 34613620
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Proton beam dosimetry in the presence of magnetic fields using Farmer-type ionization chambers of different radii.
    Marot M; Surla S; Burke E; Brons S; Runz A; Greilich S; Karger CP; Jäkel O; Burigo LN
    Med Phys; 2023 Jul; 50(7):4590-4599. PubMed ID: 36940235
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Physics and small-scale dosimetry of
    Alcocer-Ávila ME; Larouze A; Groetz JE; Hindié E; Champion C
    Med Phys; 2024 Jul; 51(7):5007-5019. PubMed ID: 38478014
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Monte Carlo calculation of quality correction factors based on air kerma and absorbed dose to water in medium energy x-ray beams.
    Czarnecki D; Zink K; Pimpinella M; Borbinha J; Teles P; Pinto M
    Phys Med Biol; 2020 Dec; 65(24):245042. PubMed ID: 33120372
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Ion recombination and polarity correction factors for a plane-parallel ionization chamber in a proton scanning beam.
    Liszka M; Stolarczyk L; Kłodowska M; Kozera A; Krzempek D; Mojżeszek N; Pędracka A; Waligórski MPR; Olko P
    Med Phys; 2018 Jan; 45(1):391-401. PubMed ID: 29131351
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Direct determination of k
    Krauss A; Kapsch RP
    Phys Med Biol; 2018 Feb; 63(3):035041. PubMed ID: 29327693
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Correction factors for A1SL ionization chamber dosimetry in TomoTherapy: machine-specific, plan-class, and clinical fields.
    Gago-Arias A; Rodriguez-Romero R; Sanchez-Rubio P; Miguel Gonzalez-Castano D; Gomez F; Nunez L; Palmans H; Sharpe P; Pardo-Montero J
    Med Phys; 2012 Apr; 39(4):1964-70. PubMed ID: 22482617
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Comparison of out-of-field normal tissue dose estimates for pencil beam scanning proton therapy: MCNP6, PHITS, and TOPAS.
    Griffin KT; Yeom YS; Mille MM; Lee C; Jung JW; Hertel NE; Lee C
    Biomed Phys Eng Express; 2022 Dec; 9(1):. PubMed ID: 36562506
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dual ring multilayer ionization chamber and theory-based correction technique for scanning proton therapy.
    Takayanagi T; Nihongi H; Nishiuchi H; Tadokoro M; Ito Y; Nakashima C; Fujitaka S; Umezawa M; Matsuda K; Sakae T; Terunuma T
    Med Phys; 2016 Jul; 43(7):4150. PubMed ID: 27370135
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Feasibility study of macroscopic simulations of nanodosimetric parameters for proton therapy.
    Vasi F; Schmidli K; Hälg RA; Schneider U
    Med Phys; 2020 Nov; 47(11):5872-5881. PubMed ID: 32285455
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Electron beam quality k(Q,Q0) factors for various ionization chambers: a Monte Carlo investigation with PENELOPE.
    Erazo F; Brualla L; Lallena AM
    Phys Med Biol; 2014 Nov; 59(21):6673-91. PubMed ID: 25325343
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes.
    Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M
    Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Experimental and Monte-Carlo characterization of the novel compact ionization chamber PTW 31023 for reference and relative dosimetry in high energy photon beams.
    Büsing I; Brant A; Lange T; Delfs B; Poppinga D; Kranzer R; Looe HK; Poppe B
    Z Med Phys; 2019 Dec; 29(4):303-313. PubMed ID: 30878324
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Perturbation factors for cylindrical ionization chambers in proton beams. Part I: corrections for gradients.
    Palmans H
    Phys Med Biol; 2006 Jul; 51(14):3483-501. PubMed ID: 16825744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.