These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38261791)

  • 41. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.
    Park YS; Guo S; Makarov NS; Klimov VI
    ACS Nano; 2015 Oct; 9(10):10386-93. PubMed ID: 26312994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling.
    Birowosuto MD; Sumikura H; Matsuo S; Taniyama H; van Veldhoven PJ; Nötzel R; Notomi M
    Sci Rep; 2012; 2():321. PubMed ID: 22432053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Robustness of quantum dot power-law blinking.
    Bharadwaj P; Novotny L
    Nano Lett; 2011 May; 11(5):2137-41. PubMed ID: 21500822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-excitonic defect-assisted radiative transitions are responsible for new D-type blinking in ternary quantum dots.
    Olejniczak A; Rich R; Gryczynski Z; Cichy B
    Nanoscale Horiz; 2021 Dec; 7(1):63-76. PubMed ID: 34792059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoluminescence Properties of CdSe/ZnS Quantum Dot Donor-Acceptor via Plasmon Coupling of Metal Nanostructures and Application on Photovoltaic Devices.
    Nguyen HT; Tran TT; Bhatt V; Kumar M; Yun JH
    J Phys Chem Lett; 2022 May; 13(19):4394-4401. PubMed ID: 35546522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing Multiexcitonic Emission in Metal-Halide Perovskites by Quantum Confinement.
    Strandell D; Dirin D; Zenatti D; Nagpal P; Ghosh A; Raino G; Kovalenko MV; Kambhampati P
    ACS Nano; 2023 Dec; 17(24):24910-24918. PubMed ID: 38079478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced Emission from Bright Excitons in Asymmetrically Strained Colloidal CdSe/Cd
    Fedin I; Goryca M; Liu D; Tretiak S; Klimov VI; Crooker SA
    ACS Nano; 2021 Sep; 15(9):14444-14452. PubMed ID: 34473467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-Time Blinking Suppression of Perovskite Quantum Dots by Halide Vacancy Filling.
    Chouhan L; Ito S; Thomas EM; Takano Y; Ghimire S; Miyasaka H; Biju V
    ACS Nano; 2021 Feb; 15(2):2831-2838. PubMed ID: 33417451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nearly suppressed photoluminescence blinking of small-sized, blue-green-orange-red emitting single CdSe-based core/gradient alloy shell/shell quantum dots: correlation between truncation time and photoluminescence quantum yield.
    Roy D; Mandal S; De CK; Kumar K; Mandal PK
    Phys Chem Chem Phys; 2018 Apr; 20(15):10332-10344. PubMed ID: 29610808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system.
    Unsleber S; Schneider C; Maier S; He YM; Gerhardt S; Lu CY; Pan JW; Kamp M; Höfling S
    Opt Express; 2015 Dec; 23(26):32977-85. PubMed ID: 26831965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coupling single quantum dots to plasmonic nanocones: optical properties.
    Meixner AJ; Jäger R; Jäger S; Bräuer A; Scherzinger K; Fulmes J; Krockhaus Sz; Gollmer DA; Kern DP; Fleischer M
    Faraday Discuss; 2015; 184():321-37. PubMed ID: 26404008
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking "giant" core/shell nanocrystal quantum dots.
    Ghosh Y; Mangum BD; Casson JL; Williams DJ; Htoon H; Hollingsworth JA
    J Am Chem Soc; 2012 Jun; 134(23):9634-43. PubMed ID: 22578279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gate Controlled Excitonic Emission in Quantum Dot Thin Films.
    Rahman IKMR; Uddin SZ; Yeh M; Higashitarumizu N; Kim J; Li Q; Lee H; Lee K; Kim H; Park C; Lim J; Ager JW; Javey A
    Nano Lett; 2023 Nov; 23(22):10164-10170. PubMed ID: 37934978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion.
    Hu F; Yin C; Zhang H; Sun C; Yu WW; Zhang C; Wang X; Zhang Y; Xiao M
    Nano Lett; 2016 Oct; 16(10):6425-6430. PubMed ID: 27689439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Auger ionization beats photo-oxidation of semiconductor quantum dots: extended stability of single-molecule photoluminescence.
    Yamashita S; Hamada M; Nakanishi S; Saito H; Nosaka Y; Wakida S; Biju V
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3892-6. PubMed ID: 25728264
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon Nanodots with Sub-Nanosecond Spontaneous Emission Lifetime.
    Liu CW; Lin TN; Chang LY; Jiang ZC; Shen JL; Chen PW; Wang JS; Yuan CT
    Chemphyschem; 2017 Jan; 18(1):42-46. PubMed ID: 27737500
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thick-Shell CuInS
    Zang H; Li H; Makarov NS; Velizhanin KA; Wu K; Park YS; Klimov VI
    Nano Lett; 2017 Mar; 17(3):1787-1795. PubMed ID: 28169547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sub-Bandgap Optical Modulation of Quantum Dot Blinking Statistics.
    Hasham M; Wilson MWB
    J Phys Chem Lett; 2020 Aug; 11(15):6404-6412. PubMed ID: 32787286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.