These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38261892)
41. Physics successfully implements Lagrange multiplier optimization. Vadlamani SK; Xiao TP; Yablonovitch E Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26639-26650. PubMed ID: 33046659 [TBL] [Abstract][Full Text] [Related]
42. Adaptive fixed-point iterative shrinkage/thresholding algorithm for MR imaging reconstruction using compressed sensing. Wu G; Luo S Magn Reson Imaging; 2014 May; 32(4):372-8. PubMed ID: 24512794 [TBL] [Abstract][Full Text] [Related]
43. Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy. Gao H; Zhang Y; Ren L; Yin FF Med Phys; 2018 Jan; 45(1):167-177. PubMed ID: 29136282 [TBL] [Abstract][Full Text] [Related]
44. Jointly Using Low-Rank and Sparsity Priors for Sparse Inverse Synthetic Aperture Radar Imaging. Qiu W; Zhou J; Fu Q IEEE Trans Image Process; 2020; 29():100-115. PubMed ID: 31329559 [TBL] [Abstract][Full Text] [Related]
45. Prediction of Individual Muscle Forces Using Lagrange Multipliers Method - A Model of the Upper Human Limb in the Sagittal Plane: I. Theoretical Considerations. Raikova R Comput Methods Biomech Biomed Engin; 2000; 3(2):95-107. PubMed ID: 11264841 [TBL] [Abstract][Full Text] [Related]
46. A symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming. Liu J; Duan Y; Sun M J Inequal Appl; 2017; 2017(1):129. PubMed ID: 28680232 [TBL] [Abstract][Full Text] [Related]
47. Binary information propagation in circular magnetic nanodot arrays using strain induced magnetic anisotropy. Salehi-Fashami M; Al-Rashid M; Sun WY; Nordeen P; Bandyopadhyay S; Chavez AC; Carman GP; Atulasimha J Nanotechnology; 2016 Oct; 27(43):43LT01. PubMed ID: 27655294 [TBL] [Abstract][Full Text] [Related]
49. Dual Alternating Direction Method of Multipliers for Inverse Imaging. Song L; Ge Z; Lam EY IEEE Trans Image Process; 2022; 31():3295-3308. PubMed ID: 35446766 [TBL] [Abstract][Full Text] [Related]
50. Rate Distortion Optimization: A Joint Framework and Algorithms for Random Access Hierarchical Video Coding. Wang X; Yang EH; He DK; Song L; Yu X IEEE Trans Image Process; 2020 Oct; PP():. PubMed ID: 33026988 [TBL] [Abstract][Full Text] [Related]
51. Iterative self-consistent parallel magnetic resonance imaging reconstruction based on nonlocal low-rank regularization. Pan T; Duan J; Wang J; Liu Y Magn Reson Imaging; 2022 May; 88():62-75. PubMed ID: 35114354 [TBL] [Abstract][Full Text] [Related]
52. Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm. Jiang M; Jin J; Liu F; Yu Y; Xia L; Wang Y; Crozier S Magn Reson Imaging; 2013 Sep; 31(7):1218-27. PubMed ID: 23684962 [TBL] [Abstract][Full Text] [Related]
53. Focused Ultrasound and Lithotripsy. Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335 [TBL] [Abstract][Full Text] [Related]
54. Exact and efficient calculation of Lagrange multipliers in biological polymers with constrained bond lengths and bond angles: proteins and nucleic acids as example cases. García-Risueño P; Echenique P; Alonso JL J Comput Chem; 2011 Nov; 32(14):3039-46. PubMed ID: 21823135 [TBL] [Abstract][Full Text] [Related]
55. A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging. Kim M; Chung W Comput Methods Programs Biomed; 2022 Oct; 225():107090. PubMed ID: 36067702 [TBL] [Abstract][Full Text] [Related]
56. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem. Dang C; Xu L Neural Netw; 2001 Mar; 14(2):217-30. PubMed ID: 11316235 [TBL] [Abstract][Full Text] [Related]
57. Letter to the Editor: CONVERGENCES AND DIVERGENCES IN THE ICD-11 VS. DSM-5 CLASSIFICATION OF MOOD DISORDERS. Cerbo AD Turk Psikiyatri Derg; 2021; 32(4):293-295. PubMed ID: 34964106 [TBL] [Abstract][Full Text] [Related]
58. [Numerical and Visual Evaluation of Compressed Sensing MRI Using 3D Cartesian Sampling]. Shinohara H; Hashimoto T; Takeyama N; Tanaka E; Hayashi T; Hashimoto T Igaku Butsuri; 2017; 37(2):70-84. PubMed ID: 29151468 [TBL] [Abstract][Full Text] [Related]
59. An Algorithm Combining Analysis-based Blind Compressed Sensing and Nonlocal Low-rank Constraints for MRI Reconstruction. Sun M; Tao J; Ye Z; Qiu B; Xu J; Xi C Curr Med Imaging Rev; 2019; 15(3):281-291. PubMed ID: 31989879 [TBL] [Abstract][Full Text] [Related]