BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38262116)

  • 1. Lamins: The backbone of the nucleocytoskeleton interface.
    Sobo JM; Alagna NS; Sun SX; Wilson KL; Reddy KL
    Curr Opin Cell Biol; 2024 Feb; 86():102313. PubMed ID: 38262116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold, mechanics and functions of nuclear lamins.
    Buxboim A; Kronenberg-Tenga R; Salajkova S; Avidan N; Shahak H; Thurston A; Medalia O
    FEBS Lett; 2023 Nov; 597(22):2791-2805. PubMed ID: 37813648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins.
    Zwerger M; Roschitzki-Voser H; Zbinden R; Denais C; Herrmann H; Lammerding J; Grütter MG; Medalia O
    J Cell Sci; 2015 Oct; 128(19):3607-20. PubMed ID: 26275827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear envelope remodelling during human spermiogenesis involves somatic B-type lamins and a spermatid-specific B3 lamin isoform.
    Elkhatib R; Longepied G; Paci M; Achard V; Grillo JM; Levy N; Mitchell MJ; Metzler-Guillemain C
    Mol Hum Reprod; 2015 Mar; 21(3):225-36. PubMed ID: 25477337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear lamins: key regulators of nuclear structure and activities.
    Prokocimer M; Davidovich M; Nissim-Rafinia M; Wiesel-Motiuk N; Bar DZ; Barkan R; Meshorer E; Gruenbaum Y
    J Cell Mol Med; 2009 Jun; 13(6):1059-85. PubMed ID: 19210577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Lamins: Thin Filaments with Major Functions.
    de Leeuw R; Gruenbaum Y; Medalia O
    Trends Cell Biol; 2018 Jan; 28(1):34-45. PubMed ID: 28893461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filaments made from A- and B-type lamins differ in structure and organization.
    Goldberg MW; Huttenlauch I; Hutchison CJ; Stick R
    J Cell Sci; 2008 Jan; 121(Pt 2):215-25. PubMed ID: 18187453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina.
    Nmezi B; Xu J; Fu R; Armiger TJ; Rodriguez-Bey G; Powell JS; Ma H; Sullivan M; Tu Y; Chen NY; Young SG; Stolz DB; Dahl KN; Liu Y; Padiath QS
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4307-4315. PubMed ID: 30765529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization.
    Schirmer EC; Guan T; Gerace L
    J Cell Biol; 2001 Apr; 153(3):479-89. PubMed ID: 11331300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration-dependent lamin assembly and its roles in the localization of other nuclear proteins.
    Guo Y; Kim Y; Shimi T; Goldman RD; Zheng Y
    Mol Biol Cell; 2014 Apr; 25(8):1287-97. PubMed ID: 24523288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laminopathies: what can humans learn from fruit flies.
    Pałka M; Tomczak A; Grabowska K; Machowska M; Piekarowicz K; Rzepecka D; Rzepecki R
    Cell Mol Biol Lett; 2018; 23():32. PubMed ID: 30002683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of Xenopus lamin LIV reveals differences in the lamin composition of sperms in amphibians and mammals.
    von Moeller F; Barendziak T; Apte K; Goldberg MW; Stick R
    Nucleus; 2010; 1(1):85-95. PubMed ID: 21327107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis.
    Broers JL; Bronnenberg NM; Kuijpers HJ; Schutte B; Hutchison CJ; Ramaekers FC
    Eur J Cell Biol; 2002 Dec; 81(12):677-91. PubMed ID: 12553668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do lamin B1 and lamin B2 have redundant functions?
    Lee JM; Jung HJ; Fong LG; Young SG
    Nucleus; 2014; 5(4):287-92. PubMed ID: 25482116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution.
    Fišerová J; Maninová M; Sieger T; Uhlířová J; Šebestová L; Efenberková M; Čapek M; Fišer K; Hozák P
    Cell Mol Life Sci; 2019 Jun; 76(11):2199-2216. PubMed ID: 30762072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear roles for non-lamin intermediate filament proteins.
    Coulombe PA; Pineda CM; Jacob JT; Nair RR
    Curr Opin Cell Biol; 2024 Feb; 86():102303. PubMed ID: 38113712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and unique mechanical aspects of nuclear lamin filaments.
    Tenga R; Medalia O
    Curr Opin Struct Biol; 2020 Oct; 64():152-159. PubMed ID: 32810798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors.
    Adam SA; Butin-Israeli V; Cleland MM; Shimi T; Goldman RD
    Nucleus; 2013; 4(2):142-50. PubMed ID: 23475125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediate filaments in the heart: The dynamic duo of desmin and lamins orchestrates mechanical force transmission.
    West G; Sedighi S; Agnetti G; Taimen P
    Curr Opin Cell Biol; 2023 Dec; 85():102280. PubMed ID: 37972529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina.
    Sapra KT; Qin Z; Dubrovsky-Gaupp A; Aebi U; Müller DJ; Buehler MJ; Medalia O
    Nat Commun; 2020 Dec; 11(1):6205. PubMed ID: 33277502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.