These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38262199)
1. The use of Mycobacterium tuberculosis H37Ra-infected immunocompetent mice as an in vivo model of persisters. Kumari N; Sharma R; Ali J; Chandra G; Singh S; Krishnan MY Tuberculosis (Edinb); 2024 Mar; 145():102479. PubMed ID: 38262199 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of in vitro activity of tuberculosis drugs by addition of thioridazine is not reflected by improved in vivo therapeutic efficacy. de Knegt GJ; ten Kate MT; van Soolingen D; Aarnoutse R; Boeree MJ; Bakker-Woudenberg IA; de Steenwinkel JE Tuberculosis (Edinb); 2014 Dec; 94(6):701-7. PubMed ID: 25621361 [TBL] [Abstract][Full Text] [Related]
3. [Experimental evidence for Mycobacterium tuberculosis persistence in M. tuberculosis-infected H37RV mice in the treatment with 3 first-line drugs (rifampicin, isoniazid, pyrazinamide)]. Smirnova TG; Chernousova LN; Andreevskaia SN; Nikolaeva GM Probl Tuberk Bolezn Legk; 2004; (3):32-7. PubMed ID: 15338898 [TBL] [Abstract][Full Text] [Related]
4. Antibiotic Treatment Shapes the Antigenic Environment During Chronic TB Infection, Offering Novel Targets for Therapeutic Vaccination. Chuang YM; Dutta NK; Gordy JT; Campodónico VL; Pinn ML; Markham RB; Hung CF; Karakousis PC Front Immunol; 2020; 11():680. PubMed ID: 32411131 [TBL] [Abstract][Full Text] [Related]
6. Assessing Pharmacodynamic Interactions in Mice Using the Multistate Tuberculosis Pharmacometric and General Pharmacodynamic Interaction Models. Chen C; Wicha SG; de Knegt GJ; Ortega F; Alameda L; Sousa V; de Steenwinkel JEM; Simonsson USH CPT Pharmacometrics Syst Pharmacol; 2017 Nov; 6(11):787-797. PubMed ID: 28657202 [TBL] [Abstract][Full Text] [Related]
7. Increasing resistance of M. tuberculosis to anti-TB drugs in Saudi Arabia. Khan MY; Kinsara AJ; Osoba AO; Wali S; Samman Y; Memish Z Int J Antimicrob Agents; 2001 May; 17(5):415-8. PubMed ID: 11337231 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the efficacy of clofazimine alone and in combination with primary agents against Mycobacterium tuberculosis in vitro. Mashele SA; Steel HC; Matjokotja MT; Rasehlo SSM; Anderson R; Cholo MC J Glob Antimicrob Resist; 2022 Jun; 29():343-352. PubMed ID: 35339735 [TBL] [Abstract][Full Text] [Related]
10. Bedaquiline kills persistent Mycobacterium tuberculosis with no disease relapse: an in vivo model of a potential cure. Hu Y; Pertinez H; Liu Y; Davies G; Coates A J Antimicrob Chemother; 2019 Jun; 74(6):1627-1633. PubMed ID: 30789209 [TBL] [Abstract][Full Text] [Related]
11. The past, present and future of tuberculosis treatment. Bi K; Cao D; Ding C; Lu S; Lu H; Zhang G; Zhang W; Li L; Xu K; Li L; Zhang Y Zhejiang Da Xue Xue Bao Yi Xue Ban; 2022 Dec; 51(6):657-668. PubMed ID: 36915970 [TBL] [Abstract][Full Text] [Related]
12. Fighting tuberculosis by drugs targeting nonreplicating Iacobino A; Piccaro G; Giannoni F; Mustazzolu A; Fattorini L Int J Mycobacteriol; 2017; 6(3):213-221. PubMed ID: 28776518 [TBL] [Abstract][Full Text] [Related]
13. Early bactericidal activity of ethambutol, pyrazinamide and the fixed combination of isoniazid, rifampicin and pyrazinamide (Rifater) in patients with pulmonary tuberculosis. Botha FJ; Sirgel FA; Parkin DP; van de Wal BW; Donald PR; Mitchison DA S Afr Med J; 1996 Feb; 86(2):155-8. PubMed ID: 8619142 [TBL] [Abstract][Full Text] [Related]
14. Cubosome Lipid Nanocarriers As a Drug Delivery Vehicle for Intracellular Sarkar S; Dyett B; Lakic B; Ball AS; Yeo LY; White JF; Soni S; Drummond CJ; Conn CE ACS Appl Mater Interfaces; 2023 May; 15(18):21819-21829. PubMed ID: 37018059 [No Abstract] [Full Text] [Related]
15. Prediction of drug resistance by Sanger sequencing of Mycobacterium tuberculosis complex strains isolated from multidrug resistant tuberculosis suspect patients in Ethiopia. Mesfin EA; Merker M; Beyene D; Tesfaye A; Shuaib YA; Addise D; Tessema B; Niemann S PLoS One; 2022; 17(8):e0271508. PubMed ID: 35930613 [TBL] [Abstract][Full Text] [Related]
16. In vitro potency of 2-(((2-hydroxyphenyl)amino)methylene)-5,5-dimethylcyclohexane-1,3-dione against drug-resistant and non-replicating persisters of Mycobacterium tuberculosis. Rather MA; Bhat ZS; Lone AM; Maqbool M; Bhat BA; Ahmad Z J Glob Antimicrob Resist; 2021 Jun; 25():202-208. PubMed ID: 33789204 [TBL] [Abstract][Full Text] [Related]
17. Superior Efficacy of a TBI-166, Bedaquiline, and Pyrazinamide Combination Regimen in a Murine Model of Tuberculosis. Ding Y; Zhu H; Fu L; Zhang W; Wang B; Guo S; Chen X; Wang N; Liu H; Lu Y Antimicrob Agents Chemother; 2022 Sep; 66(9):e0065822. PubMed ID: 35924925 [TBL] [Abstract][Full Text] [Related]
18. Analytical and clinical performance characteristics of the Abbott RealTime MTB RIF/INH Resistance, an assay for the detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis in pulmonary specimens. Kostera J; Leckie G; Tang N; Lampinen J; Szostak M; Abravaya K; Wang H Tuberculosis (Edinb); 2016 Dec; 101():137-143. PubMed ID: 27865383 [TBL] [Abstract][Full Text] [Related]
19. Drug Resistance of Mouse Somatic Cells to Rifampicin in Experimental Tuberculosis. Nikonenko BV; Bocharova IV; Lepekha LN Bull Exp Biol Med; 2021 May; 171(1):53-55. PubMed ID: 34050415 [TBL] [Abstract][Full Text] [Related]
20. Co-resistance to isoniazid and second-line anti-tuberculosis drugs in isoniazid-resistant tuberculosis at a tertiary care hospital in Thailand. Prommi A; Wongjarit K; Petsong S; Somsukpiroh U; Faksri K; Kawkitinarong K; Payungporn S; Rotcheewaphan S Microbiol Spectr; 2024 Mar; 12(3):e0346223. PubMed ID: 38323824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]