These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38262201)

  • 1. Development of a biofidelic computational model of human pelvis for predicting biomechanical responses and pelvic fractures.
    Zeng W; Mukherjee S; Neice R; Salzar RS; Panzer MB
    Comput Biol Med; 2024 Mar; 170():107986. PubMed ID: 38262201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical study of anterior and posterior pelvic rings using pedicle screw fixation for Tile C1 pelvic fractures: Finite element analysis.
    Song Y; Shao C; Yang X; Lin F
    PLoS One; 2022; 17(8):e0273351. PubMed ID: 36006983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the structural behavior of the pelvis during lateral impact using the finite element method.
    Dawson JM; Khmelniker BV; McAndrew MP
    Accid Anal Prev; 1999; 31(1-2):109-19. PubMed ID: 10084625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Design of Minimal Invasive Screw on Posterior Pelvis Ring and Pelvic Finite Element Analysis].
    Tang F; Min L; Wang YL; Qu B; Zhou Y; Luo Y; Zhang WL; Shi R; Duan H; Tu CQ
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2017 Sep; 48(5):673-680. PubMed ID: 29130656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Ramezani M; Klima S; de la Herverie PLC; Campo J; Le Joncour JB; Rouquette C; Scholze M; Hammer N
    Biomed Res Int; 2019; 2019():3973170. PubMed ID: 30729122
    [No Abstract]   [Full Text] [Related]  

  • 9. [Response of a finite element model of the pelvis to different side impact loads].
    Ruan S; Zheng H; Li H; Zhao W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):772-6. PubMed ID: 24059054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation and Validation of Thorax Model Responses: A Hierarchical Approach to Achieve High Biofidelity for Thoracic Musculoskeletal System.
    Zeng W; Mukherjee S; Caudillo A; Forman J; Panzer MB
    Front Bioeng Biotechnol; 2021; 9():712656. PubMed ID: 34336812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-silico pelvis and sacroiliac joint motion-A review on published research using numerical analyses.
    Hammer N; Klima S
    Clin Biomech (Bristol, Avon); 2019 Jan; 61():95-104. PubMed ID: 30544056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel combined hemipelvic endoprosthesis for peri-acetabular tumours involving sacroiliac joint: a finite element study.
    Wang B; Sun P; Xie X; Wu W; Tu J; Ouyang J; Shen J
    Int Orthop; 2015 Nov; 39(11):2253-9. PubMed ID: 26183143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical investigation on the variation in hip injury tolerance with occupant posture during frontal collisions.
    Yue N; Untaroiu CD
    Traffic Inj Prev; 2014; 15(5):513-22. PubMed ID: 24678575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of acetabular fractures--development and validation with a synthetic pelvis.
    Shim V; Böhme J; Vaitl P; Klima S; Josten C; Anderson I
    J Biomech; 2010 May; 43(8):1635-9. PubMed ID: 20381049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MATHEMATICAL JUSTIFICATION OF THE CHOICE OF RODS FOR EXTERNAL FIXATION DEVICES FOR POLYSTRUCTURAL PELVIC INJURIES.
    Hasanov N; Istomin A; Istomin D
    Georgian Med News; 2023; (340-341):6-13. PubMed ID: 37805866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests.
    Lee CH; Hsu CC; Huang PY
    Comput Biol Med; 2017 Aug; 87():250-257. PubMed ID: 28618337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics study of a 3D printed sacroiliac joint fixed modular hemipelvic endoprosthesis.
    Li X; Ji T; Huang S; Wang C; Zheng Y; Guo W
    Clin Biomech (Bristol, Avon); 2020 Apr; 74():87-95. PubMed ID: 32146381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of minimally invasive treatment options for Type C unstable fractures of the pelvic ring.
    Cavalcanti Kußmaul A; Greiner A; Kammerlander C; Zeckey C; Woiczinski M; Thorwächter C; Gennen C; Kleber C; Böcker W; Becker CA
    Orthop Traumatol Surg Res; 2020 Feb; 106(1):127-133. PubMed ID: 31864961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Finite element analysis of five internal fixation modes in treatment of Day type
    Pei X; Huang J; Qian S; Zhou W; Ke X; Wang G; Lei J; Liu X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Oct; 37(10):1205-1213. PubMed ID: 37848314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.