These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38262485)

  • 1. Predicting Drug-drug Interaction with Graph Mutual Interaction Attention Mechanism.
    Yan X; Gu C; Feng Y; Han J
    Methods; 2024 Mar; 223():16-25. PubMed ID: 38262485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual graph neural network for drug-drug interactions prediction based on molecular structure and interactions.
    Ma M; Lei X
    PLoS Comput Biol; 2023 Jan; 19(1):e1010812. PubMed ID: 36701288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning size-adaptive molecular substructures for explainable drug-drug interaction prediction by substructure-aware graph neural network.
    Yang Z; Zhong W; Lv Q; Yu-Chian Chen C
    Chem Sci; 2022 Jul; 13(29):8693-8703. PubMed ID: 35974769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery.
    Zhang C; Zang T; Zhao T
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38348746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IIFDTI: predicting drug-target interactions through interactive and independent features based on attention mechanism.
    Cheng Z; Zhao Q; Li Y; Wang J
    Bioinformatics; 2022 Sep; 38(17):4153-4161. PubMed ID: 35801934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MASMDDI: multi-layer adaptive soft-mask graph neural network for drug-drug interaction prediction.
    Lin J; Hong B; Cai Z; Lu P; Lin K
    Front Pharmacol; 2024; 15():1369403. PubMed ID: 38831885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs.
    Feng YH; Zhang SW
    Molecules; 2022 May; 27(9):. PubMed ID: 35566354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BDN-DDI: A bilinear dual-view representation learning framework for drug-drug interaction prediction.
    Ning G; Sun Y; Ling J; Chen J; He J
    Comput Biol Med; 2023 Oct; 165():107340. PubMed ID: 37603959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisource Attention-Mechanism-Based Encoder-Decoder Model for Predicting Drug-Drug Interaction Events.
    Pan D; Quan L; Jin Z; Chen T; Wang X; Xie J; Wu T; Lyu Q
    J Chem Inf Model; 2022 Dec; 62(23):6258-6270. PubMed ID: 36449561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-view feature representation and fusion for drug-drug interactions prediction.
    Wang J; Zhang S; Li R; Chen G; Yan S; Ma L
    BMC Bioinformatics; 2023 Mar; 24(1):93. PubMed ID: 36918766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions.
    Su X; Hu L; You Z; Hu P; Zhao B
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35453147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting drug-drug interactions by graph convolutional network with multi-kernel.
    Wang F; Lei X; Liao B; Wu FX
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs.
    Shi JY; Huang H; Li JX; Lei P; Zhang YN; Dong K; Yiu SM
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):411. PubMed ID: 30453924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CasANGCL: pre-training and fine-tuning model based on cascaded attention network and graph contrastive learning for molecular property prediction.
    Zheng Z; Tan Y; Wang H; Yu S; Liu T; Liang C
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network.
    Cheng Z; Yan C; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2208-2218. PubMed ID: 33956632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locality preserving dense graph convolutional networks with graph context-aware node representations.
    Liu W; Gong M; Tang Z; Qin AK; Sheng K; Xu M
    Neural Netw; 2021 Nov; 143():108-120. PubMed ID: 34116289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug-target interaction.
    Qian Y; Li X; Wu J; Zhang Q
    BMC Bioinformatics; 2023 Aug; 24(1):323. PubMed ID: 37633938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-target interaction predication via multi-channel graph neural networks.
    Li Y; Qiao G; Wang K; Wang G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.
    He C; Liu Y; Li H; Zhang H; Mao Y; Qin X; Liu L; Zhang X
    BMC Bioinformatics; 2022 Jun; 23(1):224. PubMed ID: 35689200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MSDAFL: molecular substructure-based dual attention feature learning framework for predicting drug-drug interactions.
    Hou C; Duan G; Yan C
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39383521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.