BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38262542)

  • 1. Self-endowed magnetic photocatalysts derived from iron-rich sludge and its recycling in photocatalytic process for tetracycline degradation.
    Liu X; Wang H; Wang C; Zhao L; Pan H; Liu Y; Liang L; Zhao C; Huang S
    Bioresour Technol; 2024 Mar; 395():130357. PubMed ID: 38262542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient photocatalytic degradation of tetracycline using magnetic biochar derived by iron-rich sludge.
    Liu X; Wang H; Shi X; Zhou Z; Li N; Pan H; Shi Q
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90708-90720. PubMed ID: 37464209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfidated nanoscale zero-valent iron derived from iron sludge for tetracycline removal: Role of sulfur and iron in reactivity and mechanisms.
    Zhu S; Yang K; Wang T; He S; Ma X; Deng J; Shao P; Li X; Ma X
    Environ Pollut; 2024 Mar; 344():123305. PubMed ID: 38195022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of P-doped CdS nanorods as an efficient photocatalyst for the degradation of the emerging pollutant tetracycline antibiotic under blue LED light irradiation.
    Das S; Ahn YH
    Dalton Trans; 2022 Sep; 51(36):13646-13656. PubMed ID: 36040135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot fabrication of sludge-derived magnetic Fe,N-codoped carbon catalysts for peroxymonosulfate-induced elimination of phenolic contaminants.
    Wang J; Kou L; Zhao L; Duan W
    Chemosphere; 2020 Jun; 248():126076. PubMed ID: 32032882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-biochar production from oily sludge pyrolysis and its application for organic dyes removal.
    Liu Y; Jiang Z; Fu J; Ao W; Ali Siyal A; Zhou C; Liu C; Dai J; Yu M; Zhang Y; Jin Y; Yuan Y; Zhang C
    Chemosphere; 2022 Aug; 301():134803. PubMed ID: 35508264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of titanium-coagulated algae-rich sludge for enhanced photocatalytic oxidation of phenolic contaminants through oxygen vacancy.
    Zhao Y; Chi Y; Tian C; Liu Y; Li H; Wang A
    Water Res; 2020 Jun; 177():115789. PubMed ID: 32304907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sludge based micro-electrolysis filler for removing tetracycline from solution.
    Cui X; Li N; Chen G; Zheng H; Li X
    J Colloid Interface Sci; 2019 Jan; 534():490-498. PubMed ID: 30248618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar.
    Wei J; Liu Y; Zhu Y; Li J
    Chemosphere; 2020 May; 247():125854. PubMed ID: 31955042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Fe
    Yang H; Zhou J; Yang E; Li H; Wu S; Yang W; Wang H
    Chemosphere; 2021 Jan; 263():128011. PubMed ID: 32841880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and application of CdS nanorods for LED-based photocatalytic degradation of tetracycline antibiotic.
    Das S; Ahn YH
    Chemosphere; 2022 Mar; 291(Pt 2):132870. PubMed ID: 34774615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of MoO
    Liu L; Huang J; Yu H; Wan J; Liu L; Yi K; Zhang W; Zhang C
    Chemosphere; 2021 Nov; 282():131049. PubMed ID: 34098307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling waste iron-rich algal flocs as cost-effective biochar activator for heterogeneous Fenton-like reaction towards tetracycline degradation: Important role of iron species and moderately defective structures.
    Xia W; Li S; Wu G; Ma J
    J Hazard Mater; 2023 Oct; 460():132377. PubMed ID: 37639790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation.
    Wang J; Shen M; Gong Q; Wang X; Cai J; Wang S; Chen Z
    Sci Total Environ; 2020 Apr; 714():136728. PubMed ID: 31982750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel fabrication of the recyclable MoS
    Atla R; Oh TH
    Chemosphere; 2022 Sep; 303(Pt 1):134922. PubMed ID: 35568215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic biochar catalysts from anaerobic digested sludge: Production, application and environment impact.
    Chen YD; Bai S; Li R; Su G; Duan X; Wang S; Ren NQ; Ho SH
    Environ Int; 2019 May; 126():302-308. PubMed ID: 30825749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of copper-based catalysts from electroplating sludge by ultrasound treatment and their antibiotic degradation performance.
    Zhou Z; Liu T; Wu J; Li H; Chu S; Zhu X; Zhang L; Lu J; Ivanets A; Davronbek B; Ma K; Su X
    Environ Res; 2023 Jan; 216(Pt 2):114567. PubMed ID: 36244441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of chitosan-iron oxide modified sludge-based biochar for effective removal of tetracycline from water: performance and mechanism.
    Yang Y; Li S; Zhu Z; Wan L; Wang X; Hou J; Liu S; Fan X
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):622-633. PubMed ID: 38012501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiently catalytic degradation of tetracycline via persulfate activation with plant-based biochars: Insight into endogenous mineral self-template effect and pyrolysis catalysis.
    Zeng S; Li K; Xu X; Zhang J; Xue Y
    Chemosphere; 2023 Oct; 337():139309. PubMed ID: 37391085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Iron-Loaded Granular Activated Carbon Catalyst and Its Application in Tetracycline Antibiotic Removal from Aqueous Solution.
    Pan L; Cao Y; Zang J; Huang Q; Wang L; Zhang Y; Fan S; Tang J; Xie Z
    Int J Environ Res Public Health; 2019 Jun; 16(13):. PubMed ID: 31252570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.