These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38262606)

  • 61. Rainfall can explain adaptive phenotypic variation with high gene flow in the New Holland Honeyeater (Phylidonyris novaehollandiae).
    Myers SA; Donnellan S; Kleindorfer S
    Ecol Evol; 2012 Oct; 2(10):2397-412. PubMed ID: 23145327
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The long and the short of it: no dietary specialisation between male and female western sandpipers despite strong bill size dimorphism.
    Franks SE; Fernández G; Hodkinson DJ; Kyser TK; Lank DB
    PLoS One; 2013; 8(11):e79835. PubMed ID: 24260305
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Australian songbird body size tracks climate variation: 82 species over 50 years.
    Gardner JL; Amano T; Peters A; Sutherland WJ; Mackey B; Joseph L; Stein J; Ikin K; Little R; Smith J; Symonds MRE
    Proc Biol Sci; 2019 Dec; 286(1916):20192258. PubMed ID: 31771472
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid?
    Ma G; Hoffmann AA; Ma CS
    J Therm Biol; 2021 May; 98():102936. PubMed ID: 34016358
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Both natural selection and isolation by distance explain phenotypic divergence in bill size and body mass between South Australian little penguin colonies.
    Colombelli-Négrel D
    Ecol Evol; 2016 Nov; 6(22):7965-7975. PubMed ID: 27878069
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century.
    Iyakaremye V; Zeng G; Yang X; Zhang G; Ullah I; Gahigi A; Vuguziga F; Asfaw TG; Ayugi B
    Sci Total Environ; 2021 Oct; 790():148162. PubMed ID: 34102437
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Growth factor gene IGF1 is associated with bill size in the black-bellied seedcracker Pyrenestes ostrinus.
    vonHoldt BM; Kartzinel RY; Huber CD; Le Underwood V; Zhen Y; Ruegg K; Lohmueller KE; Smith TB
    Nat Commun; 2018 Nov; 9(1):4855. PubMed ID: 30451848
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Adaptive thermoregulation in endotherms may alter responses to climate change.
    Boyles JG; Seebacher F; Smit B; McKechnie AE
    Integr Comp Biol; 2011 Nov; 51(5):676-90. PubMed ID: 21690108
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inferences of genetic architecture of bill morphology in house sparrow using a high-density SNP array point to a polygenic basis.
    Lundregan SL; Hagen IJ; Gohli J; Niskanen AK; Kemppainen P; Ringsby TH; Kvalnes T; Pärn H; Rønning B; Holand H; Ranke PS; Båtnes AS; Selvik LK; Lien S; Saether BE; Husby A; Jensen H
    Mol Ecol; 2018 Sep; 27(17):3498-3514. PubMed ID: 30040161
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Variation in bulk-leaf
    Rumman R; Atkin OK; Bloomfield KJ; Eamus D
    Glob Chang Biol; 2018 Mar; 24(3):1186-1200. PubMed ID: 28949085
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Diversity-dependent cladogenesis and trait evolution in the adaptive radiation of the auks (aves: alcidae).
    Weir JT; Mursleen S
    Evolution; 2013 Feb; 67(2):403-16. PubMed ID: 23356613
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Population genomics fits the bill: genetics of adaptive beak variation in Darwin's finches.
    Mundy NI
    Mol Ecol; 2016 Nov; 25(21):5265-5266. PubMed ID: 27785886
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Thermal tolerance and climate warming sensitivity in tropical snails.
    Marshall DJ; Rezende EL; Baharuddin N; Choi F; Helmuth B
    Ecol Evol; 2015 Dec; 5(24):5905-19. PubMed ID: 26811764
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Summer egg diapause in a matchstick grasshopper synchronizes the life cycle and buffers thermal extremes.
    Kearney MR; Deutscher J; Kong JD; Hoffmann AA
    Integr Zool; 2018 Jul; 13(4):437-449. PubMed ID: 29436759
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adaptive thermoregulation during summer in two populations of an arid-zone passerine.
    Smit B; Harding CT; Hockey PA; McKechnie AE
    Ecology; 2013 May; 94(5):1142-54. PubMed ID: 23858654
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling.
    McKechnie AE; Gerson AR; Wolf BO
    J Exp Biol; 2021 Feb; 224(Pt Suppl 1):. PubMed ID: 33627461
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance.
    McKechnie AE; Gerson AR; McWhorter TJ; Smith EK; Talbot WA; Wolf BO
    J Exp Biol; 2017 Jul; 220(Pt 13):2436-2444. PubMed ID: 28455441
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Avian responses to extreme weather across functional traits and temporal scales.
    Cohen JM; Fink D; Zuckerberg B
    Glob Chang Biol; 2020 Aug; 26(8):4240-4250. PubMed ID: 32452617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.