BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 38262701)

  • 1. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster.
    Everman ER; Macdonald SJ
    G3 (Bethesda); 2024 Mar; 14(3):. PubMed ID: 38262701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression variation underlying tissue-specific responses to copper stress in
    Everman ER; Macdonald SJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation.
    Everman ER; Cloud-Richardson KM; Macdonald SJ
    Genetics; 2021 Mar; 217(1):1-20. PubMed ID: 33683361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification.
    Egli D; Domènech J; Selvaraj A; Balamurugan K; Hua H; Capdevila M; Georgiev O; Schaffner W; Atrian S
    Genes Cells; 2006 Jun; 11(6):647-58. PubMed ID: 16716195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic basis of adaptation to copper pollution in
    Everman ER; Macdonald SJ; Kelly JK
    Front Genet; 2023; 14():1144221. PubMed ID: 37082199
    [No Abstract]   [Full Text] [Related]  

  • 6. Genotoxicity responses of single and mixed exposure to heavy metals (cadmium, silver, and copper) as environmental pollutants in Drosophila melanogaster.
    Demir E; Turna Demir F
    Environ Toxicol Pharmacol; 2024 Mar; 106():104390. PubMed ID: 38367919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity.
    Calap-Quintana P; González-Fernández J; Sebastiá-Ortega N; Llorens JV; Moltó MD
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28684721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis.
    Egli D; Selvaraj A; Yepiskoposyan H; Zhang B; Hafen E; Georgiev O; Schaffner W
    EMBO J; 2003 Jan; 22(1):100-8. PubMed ID: 12505988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors.
    Green L; Coronado-Zamora M; Radío S; Rech GE; Salces-Ortiz J; González J
    BMC Biol; 2022 Dec; 20(1):275. PubMed ID: 36482348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure.
    Zhou S; Luoma SE; St Armour GE; Thakkar E; Mackay TFC; Anholt RRH
    PLoS Genet; 2017 Jul; 13(7):e1006907. PubMed ID: 28732062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification.
    Egli D; Yepiskoposyan H; Selvaraj A; Balamurugan K; Rajaram R; Simons A; Multhaup G; Mettler S; Vardanyan A; Georgiev O; Schaffner W
    Mol Cell Biol; 2006 Mar; 26(6):2286-96. PubMed ID: 16508004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential sexual survival of Drosophila melanogaster on copper sulfate.
    Balinski MA; Woodruff RC
    Genetica; 2017 Apr; 145(2):131-137. PubMed ID: 28154959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential responses of sweetpotato peroxidases to heavy metals.
    Kim YH; Lee HS; Kwak SS
    Chemosphere; 2010 Sep; 81(1):79-85. PubMed ID: 20638101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population.
    Highfill CA; Reeves GA; Macdonald SJ
    BMC Genet; 2016 Aug; 17():113. PubMed ID: 27485207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population.
    Ng'oma E; Williams-Simon PA; Rahman A; King EG
    BMC Genomics; 2020 Jan; 21(1):84. PubMed ID: 31992183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single and mixed exposure to cadmium and mercury in Drosophila melanogaster: Molecular responses and impact on post-embryonic development.
    Frat L; Chertemps T; Pesce E; Bozzolan F; Dacher M; Planelló R; Herrero O; Llorente L; Moers D; Siaussat D
    Ecotoxicol Environ Saf; 2021 Sep; 220():112377. PubMed ID: 34052756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powerful, efficient QTL mapping in Drosophila melanogaster using bulked phenotyping and pooled sequencing.
    Macdonald SJ; Cloud-Richardson KM; Sims-West DJ; Long AD
    Genetics; 2022 Mar; 220(3):. PubMed ID: 35100395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-responsive transcription factor (MTF-1) and heavy metal stress response in Drosophila and mammalian cells: a functional comparison.
    Balamurugan K; Egli D; Selvaraj A; Zhang B; Georgiev O; Schaffner W
    Biol Chem; 2004 Jul; 385(7):597-603. PubMed ID: 15318808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can ecological history influence response to pollutants? Transcriptomic analysis of Manila clam collected in different Venice lagoon areas and exposed to heavy metal.
    Milan M; Matozzo V; Pauletto M; Di Camillo B; Giacomazzo M; Boffo L; Binato G; Marin MG; Patarnello T; Bargelloni L
    Aquat Toxicol; 2016 May; 174():123-33. PubMed ID: 26945539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early transcriptional changes of heavy metal resistance and multiple efflux genes in Xanthomonas campestris pv. campestris under copper and heavy metal ion stress.
    Ramnarine SDB; Ali O; Jayaraman J; Ramsubhag A
    BMC Microbiol; 2024 Mar; 24(1):81. PubMed ID: 38461228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.