BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38262711)

  • 1. Validity and reliability of deriving the autoregulatory plateau through projection pursuit regression from driven methods.
    Burma JS; Griffiths JK; Smirl JD
    Physiol Rep; 2024 Jan; 12(2):e15919. PubMed ID: 38262711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing cerebral autoregulation via oscillatory lower body negative pressure and projection pursuit regression.
    Taylor JA; Tan CO; Hamner JW
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What recording duration is required to provide physiologically valid and reliable dynamic cerebral autoregulation transfer functional analysis estimates?
    Burma JS; Miutz LN; Newel KT; Labrecque L; Drapeau A; Brassard P; Copeland P; Macaulay A; Smirl JD
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33761474
    [No Abstract]   [Full Text] [Related]  

  • 4. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random squat/stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation?
    Barnes SC; Ball N; Panerai RB; Robinson TG; Haunton VJ
    J Appl Physiol (1985); 2017 Sep; 123(3):558-566. PubMed ID: 28642293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.
    Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers.
    Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic review, meta-analysis,
    Burma JS; Roy MA; Kennedy CM; Labrecque L; Brassard P; Smirl JD
    J Cereb Blood Flow Metab; 2024 Apr; ():271678X241235878. PubMed ID: 38635887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Linear Characterisation of Cerebral Pressure-Flow Dynamics in Humans.
    Saleem S; Teal PD; Kleijn WB; O'Donnell T; Witter T; Tzeng YC
    PLoS One; 2015; 10(9):e0139470. PubMed ID: 26421429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How many squat-stand manoeuvres to assess dynamic cerebral autoregulation?
    Barnes SC; Ball N; Haunton VJ; Robinson TG; Panerai RB
    Eur J Appl Physiol; 2018 Nov; 118(11):2377-2384. PubMed ID: 30128850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure.
    Brothers RM; Zhang R; Wingo JE; Hubing KA; Crandall CG
    J Appl Physiol (1985); 2009 Dec; 107(6):1722-9. PubMed ID: 19797691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cerebrocardiovascular response to periodic squat-stand maneuvers in healthy subjects: a time-domain analysis.
    Barnes SC; Ball N; Haunton VJ; Robinson TG; Panerai RB
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1240-H1248. PubMed ID: 28887332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sex on the reliability of cerebral blood velocity regulation during lower body negative pressure and supine cycling with considerations of the menstrual cycle.
    Johnson NE; Burma JS; Seok J; Miutz LN; Smirl JD
    Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37848016
    [No Abstract]   [Full Text] [Related]  

  • 14. Does depth of squat-stand maneuver affect estimates of dynamic cerebral autoregulation?
    Batterham AP; Panerai RB; Robinson TG; Haunton VJ
    Physiol Rep; 2020 Aug; 8(16):e14549. PubMed ID: 32812372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term heart transplant recipients: heart rate-related effects on augmented transfer function coherence during repeated squat-stand maneuvers in males.
    Burma JS; Kennedy CM; Penner LC; Miutz LN; Galea OA; Ainslie PN; Smirl JD
    Am J Physiol Regul Integr Comp Physiol; 2021 Dec; 321(6):R925-R937. PubMed ID: 34730005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure.
    Labrecque L; Roy MA; Soleimani Dehnavi S; Taghizadeh M; Smirl JD; Brassard P
    J Cereb Blood Flow Metab; 2024 Apr; ():271678X241247633. PubMed ID: 38613236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of myogenic mechanisms in human cerebrovascular regulation.
    Tan CO; Hamner JW; Taylor JA
    J Physiol; 2013 Oct; 591(20):5095-105. PubMed ID: 23959681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2016 Mar; 120(5):552-63. PubMed ID: 26586907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Smart Bracelets to Assess Heart Rate Among Students During Physical Education Lessons: Feasibility, Reliability, and Validity Study.
    Sun J; Liu Y
    JMIR Mhealth Uhealth; 2020 Aug; 8(8):e17699. PubMed ID: 32663136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of the transcranial Doppler ultrasound-derived mean flow index for assessing dynamic cerebral autoregulation in healthy volunteers.
    Riberholt CG; Olsen MH; Skovgaard LT; Berg RMG; Møller K; Mehlsen J
    Med Eng Phys; 2021 Mar; 89():1-6. PubMed ID: 33608119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.