These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38263134)
1. MR radiomics predicts pathological complete response of esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy: a multicenter study. Liu Y; Wang Y; Wang X; Xue L; Zhang H; Ma Z; Deng H; Yang Z; Sun X; Men Y; Ye F; Men K; Qin J; Bi N; Wang Q; Hui Z Cancer Imaging; 2024 Jan; 24(1):16. PubMed ID: 38263134 [TBL] [Abstract][Full Text] [Related]
2. Integrating MR radiomics and dynamic hematological factors predicts pathological response to neoadjuvant chemoradiotherapy in esophageal cancer. Liu Y; Ma Z; Bao Y; Wang X; Men Y; Sun X; Ye F; Men K; Qin J; Bi N; Xue L; Hui Z Heliyon; 2024 Jul; 10(13):e33702. PubMed ID: 39050414 [TBL] [Abstract][Full Text] [Related]
3. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients. Fan L; Yang Z; Chang M; Chen Z; Wen Q J Transl Med; 2024 Jun; 22(1):579. PubMed ID: 38890720 [TBL] [Abstract][Full Text] [Related]
4. A machine learning approach using Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S Front Immunol; 2024; 15():1351750. PubMed ID: 38352868 [TBL] [Abstract][Full Text] [Related]
5. Diffusion-weighted MRI and Xu X; Sun ZY; Wu HW; Zhang CP; Hu B; Rong L; Chen HY; Xie HY; Wang YM; Lin HP; Bai YR; Ye Q; Ma XM Radiat Oncol; 2021 Jul; 16(1):132. PubMed ID: 34281566 [TBL] [Abstract][Full Text] [Related]
6. Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation. Wang J; Zhu X; Zeng J; Liu C; Shen W; Sun X; Lin Q; Fang J; Chen Q; Ji Y Eur Radiol; 2023 Dec; 33(12):8554-8563. PubMed ID: 37439939 [TBL] [Abstract][Full Text] [Related]
7. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954 [TBL] [Abstract][Full Text] [Related]
8. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma. Lu S; Wang C; Liu Y; Chu F; Jia Z; Zhang H; Wang Z; Lu Y; Wang S; Yang G; Qu J Eur Radiol; 2024 Jan; 34(1):485-494. PubMed ID: 37540319 [TBL] [Abstract][Full Text] [Related]
9. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma. Wang JL; Tang LS; Zhong X; Wang Y; Feng YJ; Zhang Y; Liu JY Front Immunol; 2024; 15():1405146. PubMed ID: 38947338 [TBL] [Abstract][Full Text] [Related]
10. Radiomics Nomogram with Added Nodal Features Improves Treatment Response Prediction in Locally Advanced Esophageal Squamous Cell Carcinoma: A Multicenter Study. Li K; Zhang S; Hu Y; Cai A; Ao Y; Gong J; Liang M; Yang S; Chen X; Li M; Tian J; Shan H Ann Surg Oncol; 2023 Dec; 30(13):8231-8243. PubMed ID: 37755566 [TBL] [Abstract][Full Text] [Related]
11. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
12. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery. Qiu Q; Duan J; Deng H; Han Z; Gu J; Yue NJ; Yin Y Front Oncol; 2020; 10():1398. PubMed ID: 32850451 [No Abstract] [Full Text] [Related]
13. CT-based deep learning radiomics and hematological biomarkers in the assessment of pathological complete response to neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma: A two-center study. Zhang M; Lu Y; Sun H; Hou C; Zhou Z; Liu X; Zhou Q; Li Z; Yin Y Transl Oncol; 2024 Jan; 39():101804. PubMed ID: 37839176 [TBL] [Abstract][Full Text] [Related]
14. Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using Murakami Y; Kawahara D; Tani S; Kubo K; Katsuta T; Imano N; Takeuchi Y; Nishibuchi I; Saito A; Nagata Y Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34200332 [TBL] [Abstract][Full Text] [Related]
15. Neoadjuvant chemoradiotherapy versus neoadjuvant chemotherapy for the treatment of esophageal squamous cell carcinoma: a propensity score-matched study from the National Cancer Center in China. Zhang G; Zhang C; Sun N; Xue L; Yang Z; Fang L; Zhang Z; Luo Y; Gao S; Xue Q; Mu J; Gao Y; Tan F; He J J Cancer Res Clin Oncol; 2022 Apr; 148(4):943-954. PubMed ID: 34013382 [TBL] [Abstract][Full Text] [Related]
16. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model. Cheng X; Zhang Y; Zhu M; Sun R; Liu L; Li X BMC Med Imaging; 2023 Oct; 23(1):145. PubMed ID: 37779188 [TBL] [Abstract][Full Text] [Related]
17. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
18. Definitive chemoradiotherapy versus neoadjuvant chemoradiotherapy followed by surgery in patients with locally advanced esophageal squamous cell carcinoma who achieved clinical complete response when induction chemoradiation finished: A phase II random. Qian D; Chen X; Shang X; Wang Y; Tang P; Han D; Jiang H; Chen C; Zhao G; Zhou D; Cao F; Er P; Zhang W; Li X; Zhang T; Zhang B; Guan Y; Wang J; Yuan Z; Yu Z; Wang P; Pang Q Radiother Oncol; 2022 Sep; 174():1-7. PubMed ID: 35764191 [TBL] [Abstract][Full Text] [Related]
19. Development of a nomogram for the prediction of pathological complete response after neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Chao YK; Chang HK; Tseng CK; Liu YH; Wen YW Dis Esophagus; 2017 Feb; 30(2):1-8. PubMed ID: 27868287 [TBL] [Abstract][Full Text] [Related]
20. Nomogram for predicting pathologic complete response to neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Liu G; Chen T; Zhang X; Hu B; Yu J Cancer Med; 2024 Mar; 13(5):e7075. PubMed ID: 38477511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]