These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38263140)

  • 1. Resilient multi-agent RL: introducing DQ-RTS for distributed environments with data loss.
    Canese L; Cardarilli GC; Di Nunzio L; Fazzolari R; Re M; Spanò S
    Sci Rep; 2024 Jan; 14(1):1994. PubMed ID: 38263140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards coordinated and robust real-time control: a decentralized approach for combined sewer overflow and urban flooding reduction based on multi-agent reinforcement learning.
    Zhang Z; Tian W; Liao Z
    Water Res; 2023 Feb; 229():119498. PubMed ID: 36563512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample-efficient multi-agent reinforcement learning with masked reconstruction.
    Kim JI; Lee YJ; Heo J; Park J; Kim J; Lim SR; Jeong J; Kim SB
    PLoS One; 2023; 18(9):e0291545. PubMed ID: 37708154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilient Autonomous Control of Distributed Multiagent Systems in Contested Environments.
    Moghadam R; Modares H
    IEEE Trans Cybern; 2019 Nov; 49(11):3957-3967. PubMed ID: 30130241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed Spectrum Management in Cognitive Radio Networks by Consensus-Based Reinforcement Learning.
    Dašić D; Ilić N; Vučetić M; Perić M; Beko M; Stanković MS
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning.
    Li Q; Peng Z; Feng L; Zhang Q; Xue Z; Zhou B
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3461-3475. PubMed ID: 35830412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Agent Reinforcement Learning Based Fully Decentralized Dynamic Time Division Configuration for 5G and B5G Network.
    Chen X; Chuai G; Gao W
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Credit assignment with predictive contribution measurement in multi-agent reinforcement learning.
    Chen R; Tan Y
    Neural Netw; 2023 Jul; 164():681-690. PubMed ID: 37257392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decentralized Policy Coordination in Mobile Sensing with Consensual Communication.
    Zhang B; Wu L; You I
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning.
    Hu T; Luo B; Yang C; Huang T
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12098-12112. PubMed ID: 37285257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominating Set Model Aggregation for communication-efficient decentralized deep learning.
    Fotouhi F; Balu A; Jiang Z; Esfandiari Y; Jahani S; Sarkar S
    Neural Netw; 2024 Mar; 171():25-39. PubMed ID: 38091762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention Enhanced Reinforcement Learning for Multi agent Cooperation.
    Pu Z; Wang H; Liu Z; Yi J; Wu S
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8235-8249. PubMed ID: 35180087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management.
    Huang Z; Tanaka F
    PLoS One; 2022; 17(2):e0263689. PubMed ID: 35180235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low precision decentralized distributed training over IID and non-IID data.
    Aketi SA; Kodge S; Roy K
    Neural Netw; 2022 Nov; 155():451-460. PubMed ID: 36152377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consensus-based clustering and data aggregation in decentralized network of multi-agent systems.
    Damanik JJ; Lim MC; Jeong HM; Kim HY; Choi HL
    PeerJ Comput Sci; 2023; 9():e1445. PubMed ID: 37705633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RoF distributed antenna architecture- and reinforcement learning-empowered real-time EMI immunity for highly reliable railway communication.
    Bai W; Zou X; Li P; Li Y; Pan W; Yan L; Luo B
    Opt Express; 2021 Sep; 29(20):32333-32348. PubMed ID: 34615307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environment-Aware Adaptive Reinforcement Learning-Based Routing for Vehicular Ad Hoc Networks.
    Jiang Y; Zhu J; Yang K
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KnowRU: Knowledge Reuse via Knowledge Distillation in Multi-Agent Reinforcement Learning.
    Gao Z; Xu K; Ding B; Wang H
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.