These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 38263204)
1. CD44-targeting hyaluronic acid-selenium nanoparticles boost functional recovery following spinal cord injury. Luo W; Li Y; Zhao J; Niu R; Xiang C; Zhang M; Xiao C; Liu W; Gu R J Nanobiotechnology; 2024 Jan; 22(1):37. PubMed ID: 38263204 [TBL] [Abstract][Full Text] [Related]
2. Selenium-Doped Carbon Quantum Dots Efficiently Ameliorate Secondary Spinal Cord Injury via Scavenging Reactive Oxygen Species. Luo W; Wang Y; Lin F; Liu Y; Gu R; Liu W; Xiao C Int J Nanomedicine; 2020; 15():10113-10125. PubMed ID: 33363370 [TBL] [Abstract][Full Text] [Related]
3. Curcumin/pEGCG-encapsulated nanoparticles enhance spinal cord injury recovery by regulating CD74 to alleviate oxidative stress and inflammation. Chen T; Wan L; Xiao Y; Wang K; Wu P; Li C; Huang C; Liu X; Xue W; Sun G; Ji X; Lin H; Ji Z J Nanobiotechnology; 2024 Oct; 22(1):653. PubMed ID: 39443923 [TBL] [Abstract][Full Text] [Related]
4. Catalytic antioxidant nanoparticles mitigate secondary injury progression and promote functional recovery in spinal cord injury model. Jaffer H; Andrabi SS; Petro M; Kuang Y; Steinmetz MP; Labhasetwar V J Control Release; 2023 Dec; 364():109-123. PubMed ID: 37866402 [TBL] [Abstract][Full Text] [Related]
5. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Lin CW; Lu KY; Wang SY; Sung HW; Mi FL Acta Biomater; 2016 Apr; 35():280-92. PubMed ID: 26853764 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury. Huang T; Shen J; Bao B; Hu W; Sun Y; Zhu T; Lin J; Gao T; Li X; Zheng X Brain Res; 2022 Jul; 1786():147902. PubMed ID: 35381215 [TBL] [Abstract][Full Text] [Related]
7. Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Yeo JE; Kim JH; Kang SK Cell Physiol Biochem; 2008; 21(1-3):225-38. PubMed ID: 18209489 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation of Selenium Nanoparticles and Metformin in Macrophage-Derived Cell Membranes for the Treatment of Spinal Cord Injury. Liu X; Sun J; Du J; An J; Li Y; Hu Y; Xiong Y; Yu Y; Tian H; Mei X; Wu C ACS Biomater Sci Eng; 2023 Oct; 9(10):5709-5723. PubMed ID: 37713674 [TBL] [Abstract][Full Text] [Related]
9. The cellular immunotherapy of integrated photothermal anti-oxidation Pd-Se nanoparticles in inhibition of the macrophage inflammatory response in rheumatoid arthritis. Zheng C; Wu A; Zhai X; Ji H; Chen Z; Chen X; Yu X Acta Pharm Sin B; 2021 Jul; 11(7):1993-2003. PubMed ID: 34386333 [TBL] [Abstract][Full Text] [Related]
10. Epigallocatechin-3-gallate selenium nanoparticles for neuroprotection by scavenging reactive oxygen species and reducing inflammation. Wang Y; Luo W; Lin F; Liu W; Gu R Front Bioeng Biotechnol; 2022; 10():989602. PubMed ID: 36159667 [No Abstract] [Full Text] [Related]
11. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Soleymani M; Velashjerdi M; Shaterabadi Z; Barati A Carbohydr Polym; 2020 Jun; 237():116130. PubMed ID: 32241421 [TBL] [Abstract][Full Text] [Related]
12. Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats. Ebrahimi B; Mokhtari T; Ghaffari N; Adabi M; Hassanzadeh G Inflammopharmacology; 2024 Aug; 32(4):2505-2524. PubMed ID: 38702577 [TBL] [Abstract][Full Text] [Related]
13. Emergency Treatment and Photoacoustic Assessment of Spinal Cord Injury Using Reversible Dual-Signal Transform-Based Selenium Antioxidant. Ji Z; Zheng J; Ma Y; Lei H; Lin W; Huang J; Yang H; Zhang G; Li B; Shu B; Du X; Zhang J; Lin H; Liao Y Small; 2023 Aug; 19(35):e2207888. PubMed ID: 37127878 [TBL] [Abstract][Full Text] [Related]
15. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251 [TBL] [Abstract][Full Text] [Related]
16. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. Wang T; Hou J; Su C; Zhao L; Shi Y J Nanobiotechnology; 2017 Jan; 15(1):7. PubMed ID: 28068992 [TBL] [Abstract][Full Text] [Related]
17. The hetero-transplantation of human bone marrow stromal cells carried by hydrogel unexpectedly demonstrates a significant role in the functional recovery in the injured spinal cord of rats. Raynald ; Li Y; Yu H; Huang H; Guo M; Hua R; Jiang F; Zhang K; Li H; Wang F; Li L; Cui F; An Y Brain Res; 2016 Mar; 1634():21-33. PubMed ID: 26523673 [TBL] [Abstract][Full Text] [Related]
18. Valproic acid-labeled chitosan nanoparticles promote recovery of neuronal injury after spinal cord injury. Wang D; Wang K; Liu Z; Wang Z; Wu H Aging (Albany NY); 2020 May; 12(10):8953-8967. PubMed ID: 32463791 [TBL] [Abstract][Full Text] [Related]
19. Effective treatment of traumatic brain injury by injection of a selenium-containing ointment. Hu H; Gao H; Wang K; Jin Z; Zheng W; Wang Q; Yang Y; Yu C; Xu K; Gao C Acta Biomater; 2024 Oct; 187():161-171. PubMed ID: 39236795 [TBL] [Abstract][Full Text] [Related]
20. Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform. Zhou H; Li Z; Jing S; Wang B; Ye Z; Xiong W; Liu Y; Liu Y; Xu C; Kumeria T; He Y; Ye Q J Nanobiotechnology; 2024 Jun; 22(1):351. PubMed ID: 38902789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]