These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38263303)

  • 21. Observation of the magnon Hall effect.
    Onose Y; Ideue T; Katsura H; Shiomi Y; Nagaosa N; Tokura Y
    Science; 2010 Jul; 329(5989):297-9. PubMed ID: 20647460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant stress response of terahertz magnons in a spin-orbit Mott insulator.
    Kim HH; Ueda K; Nakata S; Wochner P; Mackenzie A; Hicks C; Khaliullin G; Liu H; Keimer B; Minola M
    Nat Commun; 2022 Nov; 13(1):6674. PubMed ID: 36335112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anomalous Thermal Hall Effect in an Insulating van der Waals Magnet.
    Zhang H; Xu C; Carnahan C; Sretenovic M; Suri N; Xiao D; Ke X
    Phys Rev Lett; 2021 Dec; 127(24):247202. PubMed ID: 34951793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sign Structure of Thermal Hall Conductivity and Topological Magnons for In-Plane Field Polarized Kitaev Magnets.
    Chern LE; Zhang EZ; Kim YB
    Phys Rev Lett; 2021 Apr; 126(14):147201. PubMed ID: 33891462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theory of the thermal Hall effect in quantum magnets.
    Katsura H; Nagaosa N; Lee PA
    Phys Rev Lett; 2010 Feb; 104(6):066403. PubMed ID: 20366838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin current from sub-terahertz-generated antiferromagnetic magnons.
    Li J; Wilson CB; Cheng R; Lohmann M; Kavand M; Yuan W; Aldosary M; Agladze N; Wei P; Sherwin MS; Shi J
    Nature; 2020 Feb; 578(7793):70-74. PubMed ID: 31988510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A first theoretical realization of honeycomb topological magnon insulator.
    Owerre SA
    J Phys Condens Matter; 2016 Sep; 28(38):386001. PubMed ID: 27437569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV
    Sekiguchi F; Budzinauskas K; Padmanabhan P; Versteeg RB; Tsurkan V; Kézsmárki I; Foggetti F; Artyukhin S; van Loosdrecht PHM
    Nat Commun; 2022 Jun; 13(1):3212. PubMed ID: 35680864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet.
    Kurumaji T; Nakajima T; Hirschberger M; Kikkawa A; Yamasaki Y; Sagayama H; Nakao H; Taguchi Y; Arima TH; Tokura Y
    Science; 2019 Aug; 365(6456):914-918. PubMed ID: 31395744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frustrated magnetism. Large thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet.
    Hirschberger M; Krizan JW; Cava RJ; Ong NP
    Science; 2015 Apr; 348(6230):106-9. PubMed ID: 25838381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets.
    Owerre SA
    J Phys Condens Matter; 2018 Jun; 30(24):245803. PubMed ID: 29741490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interlayer Couplings Mediated by Antiferromagnetic Magnons.
    Cheng R; Xiao D; Zhu JG
    Phys Rev Lett; 2018 Nov; 121(20):207202. PubMed ID: 30500236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topology dependence of skyrmion Seebeck and skyrmion Nernst effect.
    Weißenhofer M; Nowak U
    Sci Rep; 2022 Apr; 12(1):6801. PubMed ID: 35473940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnon Spin Relaxation and Spin Hall Effect Due to the Dipolar Interaction in Antiferromagnetic Insulators.
    Shen K
    Phys Rev Lett; 2020 Feb; 124(7):077201. PubMed ID: 32142313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topological magnon band structure of emergent Landau levels in a skyrmion lattice.
    Weber T; Fobes DM; Waizner J; Steffens P; Tucker GS; Böhm M; Beddrich L; Franz C; Gabold H; Bewley R; Voneshen D; Skoulatos M; Georgii R; Ehlers G; Bauer A; Pfleiderer C; Böni P; Janoschek M; Garst M
    Science; 2022 Mar; 375(6584):1025-1030. PubMed ID: 35239388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons.
    Han J; Zhang P; Bi Z; Fan Y; Safi TS; Xiang J; Finley J; Fu L; Cheng R; Liu L
    Nat Nanotechnol; 2020 Jul; 15(7):563-568. PubMed ID: 32483320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice.
    Dutta O; Przysiężna A; Zakrzewski J
    Sci Rep; 2015 Jun; 5():11060. PubMed ID: 26057635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Switchable quantum anomalous Hall state in a strongly frustrated lattice magnet.
    Venderbos JW; Daghofer M; van den Brink J; Kumar S
    Phys Rev Lett; 2012 Oct; 109(16):166405. PubMed ID: 23215101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chiral Magnetic Effect and Anomalous Hall Effect in Antiferromagnetic Insulators with Spin-Orbit Coupling.
    Sekine A; Nomura K
    Phys Rev Lett; 2016 Mar; 116(9):096401. PubMed ID: 26991187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid.
    Kasahara Y; Ohnishi T; Mizukami Y; Tanaka O; Ma S; Sugii K; Kurita N; Tanaka H; Nasu J; Motome Y; Shibauchi T; Matsuda Y
    Nature; 2018 Jul; 559(7713):227-231. PubMed ID: 29995863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.