These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3826338)

  • 1. High-speed ultrasensitive instrumentation for myofibril mechanics measurements.
    Iwazumi T
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C253-62. PubMed ID: 3826338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usefulness of electromagnetic induction type of force transducer and actuator for myofibril mechanics.
    Kimura K; Abe T; Phan KN; Kobayashi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():566-9. PubMed ID: 23365955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optical fiber transducer for single myofibril force measurement.
    Fearn LA; Bartoo ML; Myers JA; Pollack GH
    IEEE Trans Biomed Eng; 1993 Nov; 40(11):1127-32. PubMed ID: 8307596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis.
    Anazawa T; Yasuda K; Ishiwata S
    Biophys J; 1992 May; 61(5):1099-108. PubMed ID: 1600075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive stiffness of Drosophila IFM myofibrils: a novel, high accuracy measurement method.
    Hao Y; Bernstein SI; Pollack GH
    J Muscle Res Cell Motil; 2004; 25(4-5):359-66. PubMed ID: 15548865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new transducer based on the evanescent field effect for high-resolution displacement and force measurements.
    Knobloch KU; Vogel M; Fink RH
    Pflugers Arch; 2000 Nov; 441(1):32-8. PubMed ID: 11205059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolating Myofibrils from Skeletal Muscle Biopsies and Determining Contractile Function with a Nano-Newton Resolution Force Transducer.
    van de Locht M; de Winter JM; Rassier DE; Helmes MHB; Ottenheijm CAC
    J Vis Exp; 2020 May; (159):. PubMed ID: 32449720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multisegmental cross-bridge kinetics model of the myofibril.
    Stoecker U; Telley IA; Stüssi E; Denoth J
    J Theor Biol; 2009 Aug; 259(4):714-26. PubMed ID: 19348814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Aggregation of isolated myofibrils stimulated by their contraction. I. Origin of the second phase of optical changes during myofibril contraction].
    Shelud'ko NS; Kropacheva IV; Iudin IuK
    Biofizika; 1989; 34(3):473-7. PubMed ID: 2788462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contractile characteristics of sarcomeres arranged in series or mechanically isolated from myofibrils.
    Rassier DE; Pavlov I
    Adv Exp Med Biol; 2010; 682():123-40. PubMed ID: 20824523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of individual sarcomeres during and after stretch in activated single myofibrils.
    Rassier DE; Herzog W; Pollack GH
    Proc Biol Sci; 2003 Aug; 270(1525):1735-40. PubMed ID: 12965002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of skeletal muscle myofibrils.
    Friedman AL; Goldman YE
    Biophys J; 1996 Nov; 71(5):2774-85. PubMed ID: 8913614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting filament mechanics in the relaxed sarcomere.
    Nagornyak E; Pollack GH
    J Muscle Res Cell Motil; 2005; 26(6-8):303-6. PubMed ID: 16453159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards multi-scale modeling of muscle fibers with sarcomere non-uniformities.
    Givli S
    J Theor Biol; 2010 Jun; 264(3):882-92. PubMed ID: 20206638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myofibril tension fluctuations and molecular mechanisms of contraction.
    Iwazumi T
    Adv Exp Med Biol; 1988; 226():595-608. PubMed ID: 3407534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pauses, steps, and the mechanism of contraction.
    Pollack GH; Granzier HL; Mattiazzi A; Trombitás C; Periasamy A; Baatsen PH; Burns DH
    Adv Exp Med Biol; 1988; 226():617-42. PubMed ID: 3407536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcomere length-tension-stiffness relations of single muscle fibres in solutions of different tonicity.
    Bagni MA; Cecchi G; Colomo F
    Prog Clin Biol Res; 1989; 315():227-8. PubMed ID: 2798493
    [No Abstract]   [Full Text] [Related]  

  • 18. Measurement of nucleotide release kinetics in single skeletal muscle myofibrils during isometric and isovelocity contractions using fluorescence microscopy.
    Chaen S; Shirakawa I; Bagshaw CR; Sugi H
    Biophys J; 1997 Oct; 73(4):2033-42. PubMed ID: 9336198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere overextension reduces stretch-induced tension loss in myofibrils of rabbit psoas.
    Panchangam A; Herzog W
    J Biomech; 2011 Jul; 44(11):2144-9. PubMed ID: 21679954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions.
    Yasuda K; Shindo Y; Ishiwata S
    Biophys J; 1996 Apr; 70(4):1823-9. PubMed ID: 8785342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.