These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 38263460)
1. Single-cell transcriptomics reveals that glial cells integrate homeostatic and circadian processes to drive sleep-wake cycles. Dopp J; Ortega A; Davie K; Poovathingal S; Baz ES; Liu S Nat Neurosci; 2024 Feb; 27(2):359-372. PubMed ID: 38263460 [TBL] [Abstract][Full Text] [Related]
2. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2. Hoekstra MM; Jan M; Katsioudi G; Emmenegger Y; Franken P Elife; 2021 Dec; 10():. PubMed ID: 34895464 [TBL] [Abstract][Full Text] [Related]
3. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Hor CN; Yeung J; Jan M; Emmenegger Y; Hubbard J; Xenarios I; Naef F; Franken P Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25773-25783. PubMed ID: 31776259 [TBL] [Abstract][Full Text] [Related]
8. Functional magnetic resonance imaging-assessed brain responses during an executive task depend on interaction of sleep homeostasis, circadian phase, and PER3 genotype. Vandewalle G; Archer SN; Wuillaume C; Balteau E; Degueldre C; Luxen A; Maquet P; Dijk DJ J Neurosci; 2009 Jun; 29(25):7948-56. PubMed ID: 19553435 [TBL] [Abstract][Full Text] [Related]
9. Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles. Jan M; Jimenez S; Hor CN; Dijk DJ; Skeldon AC; Franken P Cell Syst; 2024 Jul; 15(7):610-627.e8. PubMed ID: 38986625 [TBL] [Abstract][Full Text] [Related]
10. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits. Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572 [TBL] [Abstract][Full Text] [Related]
11. Role of Homer proteins in the maintenance of sleep-wake states. Naidoo N; Ferber M; Galante RJ; McShane B; Hu JH; Zimmerman J; Maislin G; Cater J; Wyner A; Worley P; Pack AI PLoS One; 2012; 7(4):e35174. PubMed ID: 22532843 [TBL] [Abstract][Full Text] [Related]
12. Schwarz JE; King AN; Hsu CT; Barber AF; Sehgal A Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782479 [TBL] [Abstract][Full Text] [Related]
13. Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Mistlberger RE Brain Res Brain Res Rev; 2005 Nov; 49(3):429-54. PubMed ID: 16269313 [TBL] [Abstract][Full Text] [Related]
14. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. Archer SN; Oster H J Sleep Res; 2015 Oct; 24(5):476-93. PubMed ID: 26059855 [TBL] [Abstract][Full Text] [Related]
15. A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. Franken P; Thomason R; Heller HC; O'Hara BF BMC Neurosci; 2007 Oct; 8():87. PubMed ID: 17945005 [TBL] [Abstract][Full Text] [Related]
16. How sleep deprivation affects gene expression in the brain: a review of recent findings. Cirelli C J Appl Physiol (1985); 2002 Jan; 92(1):394-400. PubMed ID: 11744682 [TBL] [Abstract][Full Text] [Related]
17. Circadian Rhythms and Sleep in Dubowy C; Sehgal A Genetics; 2017 Apr; 205(4):1373-1397. PubMed ID: 28360128 [TBL] [Abstract][Full Text] [Related]
18. Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease. Duncan MJ; Smith JT; Franklin KM; Beckett TL; Murphy MP; St Clair DK; Donohue KD; Striz M; O'Hara BF Exp Neurol; 2012 Aug; 236(2):249-58. PubMed ID: 22634208 [TBL] [Abstract][Full Text] [Related]