These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38264277)

  • 1. Online Weak-form Sparse Identification of Partial Differential Equations.
    Messenger DA; Dall'anese E; Bortz DM
    Proc Mach Learn Res; 2022 Aug; 190():241-256. PubMed ID: 38264277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.
    Messenger DA; Bortz DM
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34744183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust and optimal sparse regression for nonlinear PDE models.
    Gurevich DR; Reinbold PAK; Grigoriev RO
    Chaos; 2019 Oct; 29(10):103113. PubMed ID: 31675826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using noisy or incomplete data to discover models of spatiotemporal dynamics.
    Reinbold PAK; Gurevich DR; Grigoriev RO
    Phys Rev E; 2020 Jan; 101(1-1):010203. PubMed ID: 32069592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity.
    Dong X; Bai YL; Lu Y; Fan M
    Nonlinear Dyn; 2023; 111(2):1485-1510. PubMed ID: 36246669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning mean-field equations from particle data using WSINDy.
    Messenger DA; Bortz DM
    Physica D; 2022 Nov; 439():. PubMed ID: 37476028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.
    Messenger DA; Bortz DM
    Multiscale Model Simul; 2021; 19(3):1474-1497. PubMed ID: 38239761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse learning of partial differential equations with structured dictionary matrix.
    Li X; Li L; Yue Z; Tang X; Voss HU; Kurths J; Yuan Y
    Chaos; 2019 Apr; 29(4):043130. PubMed ID: 31042938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine discovery of partial differential equations from spatiotemporal data: A sparse Bayesian learning framework.
    Yuan Y; Li X; Li L; Jiang FJ; Tang X; Zhang F; Goncalves J; Voss HU; Ding H; Kurths J
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37967264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning partial differential equations via data discovery and sparse optimization.
    Schaeffer H
    Proc Math Phys Eng Sci; 2017 Jan; 473(2197):20160446. PubMed ID: 28265183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-implicit Integration Factor Methods on Sparse Grids for High-Dimensional Systems.
    Wang D; Chen W; Nie Q
    J Comput Phys; 2015 Jul; 292():43-55. PubMed ID: 25897178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solving high-dimensional partial differential equations using deep learning.
    Han J; Jentzen A; E W
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Gouasmi A; Parish EJ; Duraisamy K
    Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170385. PubMed ID: 28989314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated Variational PDEs for Efficient Solution of Regularized Inversion Problems.
    Benyamin M; Calder J; Sundaramoorthi G; Yezzi A
    J Math Imaging Vis; 2020 Jan; 62(1):10-36. PubMed ID: 34079176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
    Brunton SL; Proctor JL; Kutz JN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3932-7. PubMed ID: 27035946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust data-driven discovery of governing physical laws with error bars.
    Zhang S; Lin G
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180305. PubMed ID: 30333709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global potential, topology, and pattern selection in a noisy stabilized Kuramoto-Sivashinsky equation.
    Chen YC; Shi C; Kosterlitz JM; Zhu X; Ao P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23227-23234. PubMed ID: 32917812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven discovery of partial differential equations.
    Rudy SH; Brunton SL; Proctor JL; Kutz JN
    Sci Adv; 2017 Apr; 3(4):e1602614. PubMed ID: 28508044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback control of chaotic systems using multiple shooting shadowing and application to Kuramoto-Sivashinsky equation.
    Shawki K; Papadakis G
    Proc Math Phys Eng Sci; 2020 Aug; 476(2240):20200322. PubMed ID: 32922158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.