These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 38264546)

  • 1. Research progress on the cannabinoid type-2 receptor and Parkinson's disease.
    Yu X; Jia Y; Dong Y
    Front Aging Neurosci; 2023; 15():1298166. PubMed ID: 38264546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential upregulation of the cannabinoid CB₂ receptor in neurotoxic and inflammation-driven rat models of Parkinson's disease.
    Concannon RM; Okine BN; Finn DP; Dowd E
    Exp Neurol; 2015 Jul; 269():133-41. PubMed ID: 25895887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease.
    Javed H; Azimullah S; Haque ME; Ojha SK
    Front Neurosci; 2016; 10():321. PubMed ID: 27531971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the Cannabinoid System in the Basal Ganglia in Parkinson's Disease.
    Wang M; Liu H; Ma Z
    Front Cell Neurosci; 2022; 16():832854. PubMed ID: 35264932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential.
    Vuic B; Milos T; Tudor L; Konjevod M; Nikolac Perkovic M; Jazvinscak Jembrek M; Nedic Erjavec G; Svob Strac D
    Biomedicines; 2022 Nov; 10(12):. PubMed ID: 36551756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Cannabinoid Type 2 Receptors in Parkinson's Disease.
    Basile MS; Mazzon E
    Biomedicines; 2022 Nov; 10(11):. PubMed ID: 36428554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroinflammation in Parkinson's Disease and its Treatment Opportunities.
    Çınar E; Tel BC; Şahin G
    Balkan Med J; 2022 Sep; 39(5):318-333. PubMed ID: 36036436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the cannabinoid CB2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice.
    Palomo-Garo C; Gómez-Gálvez Y; García C; Fernández-Ruiz J
    Pharmacol Res; 2016 Aug; 110():181-192. PubMed ID: 27063942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson's disease.
    Concannon RM; Okine BN; Finn DP; Dowd E
    Exp Neurol; 2016 Sep; 283(Pt A):204-12. PubMed ID: 27317300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target.
    Cassano T; Calcagnini S; Pace L; De Marco F; Romano A; Gaetani S
    Front Neurosci; 2017; 11():30. PubMed ID: 28210207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson's disease.
    Han QW; Yuan YH; Chen NH
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Jan; 96():109745. PubMed ID: 31442553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease.
    Gómez-Gálvez Y; Palomo-Garo C; Fernández-Ruiz J; García C
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Jan; 64():200-8. PubMed ID: 25863279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathological Correlates of Cognitive Decline in Parkinson's Disease: From Molecules to Neural Networks.
    Novikov NI; Brazhnik ES; Kitchigina VF
    Biochemistry (Mosc); 2023 Nov; 88(11):1890-1904. PubMed ID: 38105206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Toxicant-Induced Neuronal Apoptosis in Parkinson's Disease: What We Know so Far.
    Sivagurunathan N; Gnanasekaran P; Calivarathan L
    Degener Neurol Neuromuscul Dis; 2023; 13():1-13. PubMed ID: 36726995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of a Role for the TRPC Subfamily in Mediating Oxidative Stress in Parkinson's Disease.
    Maria-Ferreira D; de Oliveira NMT; da Silva LCM; Fernandes ES
    Front Physiol; 2020; 11():332. PubMed ID: 32457638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies.
    Wang T; Shi C; Luo H; Zheng H; Fan L; Tang M; Su Y; Yang J; Mao C; Xu Y
    Neuroscientist; 2022 Aug; 28(4):364-381. PubMed ID: 33576313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease.
    Sohrabi T; Mirzaei-Behbahani B; Zadali R; Pirhaghi M; Morozova-Roche LA; Meratan AA
    J Mol Biol; 2023 Jun; 435(12):167992. PubMed ID: 36736886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Therapeutic Strategies for Parkinson's Disease and Future Prospects: A 2021 Update.
    Gouda NA; Elkamhawy A; Cho J
    Biomedicines; 2022 Feb; 10(2):. PubMed ID: 35203580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.