These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38264987)
1. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen Kitanishi K; Aoyama N; Shimonaka M Biochemistry; 2024 Feb; 63(4):523-532. PubMed ID: 38264987 [TBL] [Abstract][Full Text] [Related]
2. Identification and Characterization of a Redox Sensor Phosphodiesterase from Kitanishi K; Igarashi J; Matsuoka A; Unno M Biochemistry; 2020 Mar; 59(8):983-991. PubMed ID: 32045213 [TBL] [Abstract][Full Text] [Related]
3. Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases. Galperin MY; Chou SH J Bacteriol; 2022 Apr; 204(4):e0056121. PubMed ID: 34928179 [TBL] [Abstract][Full Text] [Related]
4. Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Burns JL; Rivera S; Deer DD; Joynt SC; Dvorak D; Weinert EE Biochemistry; 2016 Dec; 55(48):6642-6651. PubMed ID: 27933792 [TBL] [Abstract][Full Text] [Related]
5. An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site. Miner KD; Klose KE; Kurtz DM Biochemistry; 2013 Aug; 52(32):5329-31. PubMed ID: 23883166 [TBL] [Abstract][Full Text] [Related]
6. A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae. McKee RW; Kariisa A; Mudrak B; Whitaker C; Tamayo R BMC Microbiol; 2014 Oct; 14():272. PubMed ID: 25343965 [TBL] [Abstract][Full Text] [Related]
7. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE mBio; 2011; 2(5):. PubMed ID: 21990613 [TBL] [Abstract][Full Text] [Related]
8. Differential ligand-selective control of opposing enzymatic activities within a bifunctional c-di-GMP enzyme. Patterson DC; Ruiz MP; Yoon H; Walker JA; Armache JP; Yennawar NH; Weinert EE Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34475207 [TBL] [Abstract][Full Text] [Related]
9. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. Heo K; Lee JW; Jang Y; Kwon S; Lee J; Seok C; Ha NC; Seok YJ J Biol Chem; 2022 Mar; 298(3):101626. PubMed ID: 35074425 [TBL] [Abstract][Full Text] [Related]
10. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Sun S; Pandelia ME Biochemistry; 2020 Jun; 59(25):2340-2350. PubMed ID: 32496757 [TBL] [Abstract][Full Text] [Related]
11. Patterns of abundance, chromosomal localization, and domain organization among c-di-GMP-metabolizing genes revealed by comparative genomics of five alphaproteobacterial orders. Koppenhöfer S; Lang AS BMC Genomics; 2022 Dec; 23(1):834. PubMed ID: 36522693 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013 [TBL] [Abstract][Full Text] [Related]
13. C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. Stelitano V; Giardina G; Paiardini A; Castiglione N; Cutruzzolà F; Rinaldo S PLoS One; 2013; 8(9):e74920. PubMed ID: 24066157 [TBL] [Abstract][Full Text] [Related]
14. Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation. Xue D; Tian F; Yang F; Chen H; Yuan X; Yang CH; Chen Y; Wang Q; He C Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217836 [TBL] [Abstract][Full Text] [Related]
15. Important roles of Tyr43 at the putative heme distal side in the oxygen recognition and stability of the Fe(II)-O2 complex of YddV, a globin-coupled heme-based oxygen sensor diguanylate cyclase. Kitanishi K; Kobayashi K; Kawamura Y; Ishigami I; Ogura T; Nakajima K; Igarashi J; Tanaka A; Shimizu T Biochemistry; 2010 Dec; 49(49):10381-93. PubMed ID: 21067162 [TBL] [Abstract][Full Text] [Related]
16. Sun S; Wang R; Pandelia ME Biochemistry; 2022 Sep; 61(17):1801-1809. PubMed ID: 35901269 [TBL] [Abstract][Full Text] [Related]
17. Finally! The structural secrets of a HD-GYP phosphodiesterase revealed. Wigren E; Liang ZX; Römling U Mol Microbiol; 2014 Jan; 91(1):1-5. PubMed ID: 24236493 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes. Tan H; West JA; Ramsay JP; Monson RE; Griffin JL; Toth IK; Salmond GPC Microbiology (Reading); 2014 Jul; 160(Pt 7):1427-1439. PubMed ID: 24760967 [TBL] [Abstract][Full Text] [Related]
19. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Ryan RP; Fouhy Y; Lucey JF; Crossman LC; Spiro S; He YW; Zhang LH; Heeb S; Cámara M; Williams P; Dow JM Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6712-7. PubMed ID: 16611728 [TBL] [Abstract][Full Text] [Related]
20. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP. Miner KD; Kurtz DM Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]