These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38265092)

  • 1. Glass-like thermal conductivity and phonon transport mechanism in disordered crystals.
    Ren G; Che J; Zhang H; Yu Y; Hao W; Shi Y; Yang F; Zhao X
    Mater Horiz; 2024 Mar; 11(6):1567-1578. PubMed ID: 38265092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-channel model for ultralow thermal conductivity of crystalline Tl
    Mukhopadhyay S; Parker DS; Sales BC; Puretzky AA; McGuire MA; Lindsay L
    Science; 2018 Jun; 360(6396):1455-1458. PubMed ID: 29954978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals.
    Luo Y; Yang X; Feng T; Wang J; Ruan X
    Nat Commun; 2020 May; 11(1):2554. PubMed ID: 32444680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. External electric field driving the ultra-low thermal conductivity of silicene.
    Qin G; Qin Z; Yue SY; Yan QB; Hu M
    Nanoscale; 2017 Jun; 9(21):7227-7234. PubMed ID: 28513696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Violation of the
    Zhu Y; Xia Y; Wang Y; Sheng Y; Yang J; Fu C; Li A; Zhu T; Luo J; Wolverton C; Snyder GJ; Liu J; Zhang W
    Research (Wash D C); 2020; 2020():4589786. PubMed ID: 33623905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance.
    Sarkar D; Bhui A; Maria I; Dutta M; Biswas K
    Chem Soc Rev; 2024 Jun; 53(12):6100-6149. PubMed ID: 38717749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic Mechanisms of Glasslike Lattice Thermal Transport in Cubic Cu_{12}Sb_{4}S_{13} Tetrahedrites.
    Xia Y; Ozoliņš V; Wolverton C
    Phys Rev Lett; 2020 Aug; 125(8):085901. PubMed ID: 32909770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals.
    Sun B; Niu S; Hermann RP; Moon J; Shulumba N; Page K; Zhao B; Thind AS; Mahalingam K; Milam-Guerrero J; Haiges R; Mecklenburg M; Melot BC; Jho YD; Howe BM; Mishra R; Alatas A; Winn B; Manley ME; Ravichandran J; Minnich AJ
    Nat Commun; 2020 Nov; 11(1):6039. PubMed ID: 33247101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials.
    Jiang J; Lu S; Ouyang Y; Chen J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Thermoelectric Performance in Phonon-Glass Electron-Crystal Like AgSbTe
    Taneja V; Das S; Dolui K; Ghosh T; Bhui A; Bhat U; Kedia DK; Pal K; Datta R; Biswas K
    Adv Mater; 2024 Feb; 36(6):e2307058. PubMed ID: 38010977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalously Suppressed Thermal Conduction by Electron-Phonon Coupling in Charge-Density-Wave Tantalum Disulfide.
    Liu H; Yang C; Wei B; Jin L; Alatas A; Said A; Tongay S; Yang F; Javey A; Hong J; Wu J
    Adv Sci (Weinh); 2020 Jun; 7(11):1902071. PubMed ID: 32537392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and Thickness Dependence of the Thermal Conductivity in 2D Ferromagnet Fe
    Claro MS; Corral-Sertal J; Fumega AO; Blanco-Canosa S; Suárez-Rodríguez M; Hueso LE; Pardo V; Rivadulla F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49538-49544. PubMed ID: 37846079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study on the contribution of anisotropic phonon transmission to thermal conductivity of silicon.
    Cheng C; Wang S
    J Phys Condens Matter; 2022 Sep; 34(43):. PubMed ID: 35995038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of thermal conductivity in silicene nanomesh: insights from coherent and incoherent phonon transport.
    Cui L; Shi S; Li Z; Wei G; Du X
    Phys Chem Chem Phys; 2018 Oct; 20(42):27169-27175. PubMed ID: 30338327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries.
    Sood A; Cheaito R; Bai T; Kwon H; Wang Y; Li C; Yates L; Bougher T; Graham S; Asheghi M; Goorsky M; Goodson KE
    Nano Lett; 2018 Jun; 18(6):3466-3472. PubMed ID: 29631399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of atomic substitution and structure on thermal conductivity in monolayers H-MN and T-MN (M = B, Al, Ga).
    Zhang Y; Gan S; Li J; Tian Y; Chen X; Su G; Hu Y; Wang N
    Phys Chem Chem Phys; 2024 Feb; 26(7):6256-6264. PubMed ID: 38305726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking Rayleigh's Law with Spatially Correlated Disorder to Control Phonon Transport.
    Thébaud S; Lindsay L; Berlijn T
    Phys Rev Lett; 2023 Jul; 131(2):026301. PubMed ID: 37505967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals.
    Kocabaş T; Çakır D; Gülseren O; Ay F; Kosku Perkgöz N; Sevik C
    Nanoscale; 2018 Apr; 10(16):7803-7812. PubMed ID: 29664085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow Lattice Thermal Conductivity at Room Temperature in Cu
    Koley B; Lakshan A; Raghuvanshi PR; Singh C; Bhattacharya A; Jana PP
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):9106-9113. PubMed ID: 33146447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon and heat transport control using pillar-based phononic crystals.
    Anufriev R; Nomura M
    Sci Technol Adv Mater; 2018; 19(1):863-870. PubMed ID: 30479674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.