BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38265238)

  • 1. Requirement of microtubules for secretion of a micronemal protein CpTSP4 in the invasive stage of the apicomplexan
    Wang D; Jiang P; Wu X; Zhang Y; Wang C; Li M; Liu M; Yin J; Zhu G
    mBio; 2024 Feb; 15(2):e0315823. PubMed ID: 38265238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mucin-like, secretory type-I transmembrane glycoprotein GP900 in the apicomplexan Cryptosporidium parvum is cleaved in the secretory pathway and likely plays a lubrication role.
    Li X; Yin J; Wang D; Gao X; Zhang Y; Wu M; Zhu G
    Parasit Vectors; 2022 May; 15(1):170. PubMed ID: 35581607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation, abundance, glycosylation profile, and localization of the TSP protein family in Cryptosporidium parvum.
    John A; M Bader S; Madiedo Soler N; Wiradiputri K; Tichkule S; Smyth ST; Ralph SA; Jex AR; Scott NE; Tonkin CJ; Goddard-Borger ED
    J Biol Chem; 2023 Mar; 299(3):103006. PubMed ID: 36775128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa).
    Snelling WJ; Lin Q; Moore JE; Millar BC; Tosini F; Pozio E; Dooley JS; Lowery CJ
    Mol Cell Proteomics; 2007 Feb; 6(2):346-55. PubMed ID: 17124246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of Cryptosporidium parvum Clec, a novel C-type lectin domain-containing mucin-like glycoprotein.
    Bhalchandra S; Ludington J; Coppens I; Ward HD
    Infect Immun; 2013 Sep; 81(9):3356-65. PubMed ID: 23817613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elongation factor-1α is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum.
    Matsubayashi M; Teramoto-Kimata I; Uni S; Lillehoj HS; Matsuda H; Furuya M; Tani H; Sasai K
    J Biol Chem; 2013 Nov; 288(47):34111-34120. PubMed ID: 24085304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the Cryptosporidium parvum microneme: a metabolically and osmotically labile apicomplexan organelle.
    Harris JR; Adrian M; Petry F
    Micron; 2003; 34(2):65-78. PubMed ID: 12801539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of New Microneme Proteins in
    Gao X; Yin J; Wang D; Li X; Zhang Y; Wang C; Zhang Y; Zhu G
    Front Vet Sci; 2021; 8():778560. PubMed ID: 34966810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new modular protein of Cryptosporidium parvum, with ricin B and LCCL domains, expressed in the sporozoite invasive stage.
    Tosini F; Agnoli A; Mele R; Gomez Morales MA; Pozio E
    Mol Biochem Parasitol; 2004 Mar; 134(1):137-47. PubMed ID: 14747151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptosporidium parvum genes containing thrombospondin type 1 domains.
    Deng M; Templeton TJ; London NR; Bauer C; Schroeder AA; Abrahamsen MS
    Infect Immun; 2002 Dec; 70(12):6987-95. PubMed ID: 12438378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion.
    Chen XM; O'Hara SP; Huang BQ; Nelson JB; Lin JJ; Zhu G; Ward HD; LaRusso NF
    Infect Immun; 2004 Dec; 72(12):6806-16. PubMed ID: 15557601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptosporidium uses multiple distinct secretory organelles to interact with and modify its host cell.
    Guérin A; Strelau KM; Barylyuk K; Wallbank BA; Berry L; Crook OM; Lilley KS; Waller RF; Striepen B
    Cell Host Microbe; 2023 Apr; 31(4):650-664.e6. PubMed ID: 36958336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apical Secretory Glycoprotein Complex Contributes to Cell Attachment and Entry by Cryptosporidium parvum.
    Akey ME; Xu R; Ravindran S; Funkhouser-Jones L; Sibley LD
    mBio; 2023 Feb; 14(1):e0306422. PubMed ID: 36722968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family.
    Spano F; Putignani L; Naitza S; Puri C; Wright S; Crisanti A
    Mol Biochem Parasitol; 1998 Apr; 92(1):147-62. PubMed ID: 9574918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion systems.
    Mageswaran SK; Guérin A; Theveny LM; Chen WD; Martinez M; Lebrun M; Striepen B; Chang YW
    Nat Commun; 2021 Aug; 12(1):4983. PubMed ID: 34404783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparin interacts with elongation factor 1α of Cryptosporidium parvum and inhibits invasion.
    Inomata A; Murakoshi F; Ishiwa A; Takano R; Takemae H; Sugi T; Cagayat Recuenco F; Horimoto T; Kato K
    Sci Rep; 2015 Jul; 5():11599. PubMed ID: 26129968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycoproteins and Gal-GalNAc cause Cryptosporidium to switch from an invasive sporozoite to a replicative trophozoite.
    Edwinson A; Widmer G; McEvoy J
    Int J Parasitol; 2016 Jan; 46(1):67-74. PubMed ID: 26432292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites.
    Petry F; Harris JR
    Int J Parasitol; 1999 Aug; 29(8):1249-60. PubMed ID: 10576576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum.
    Fei J; Wu H; Su J; Jin C; Li N; Guo Y; Feng Y; Xiao L
    Parasit Vectors; 2018 May; 11(1):312. PubMed ID: 29792229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.