These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38265300)
1. Corticocortical connections of the rostral forelimb area in rats: a quantitative tract-tracing study. Urban Iii ET; Hudson HM; Li Y; Nishibe M; Barbay S; Guggenmos DJ; Nudo RJ Cereb Cortex; 2024 Jan; 34(2):. PubMed ID: 38265300 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area. Rouiller EM; Moret V; Liang F Somatosens Mot Res; 1993; 10(3):269-89. PubMed ID: 8237215 [TBL] [Abstract][Full Text] [Related]
3. Ipsilateral cortical inputs to the rostral and caudal motor areas in rats. Mohammed H; Jain N J Comp Neurol; 2016 Oct; 524(15):3104-23. PubMed ID: 27037503 [TBL] [Abstract][Full Text] [Related]
4. Ipsilateral connections of the ventral premotor cortex in a new world primate. Dancause N; Barbay S; Frost SB; Plautz EJ; Stowe AM; Friel KM; Nudo RJ J Comp Neurol; 2006 Apr; 495(4):374-90. PubMed ID: 16485282 [TBL] [Abstract][Full Text] [Related]
5. Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Rouiller EM; Babalian A; Kazennikov O; Moret V; Yu XH; Wiesendanger M Exp Brain Res; 1994; 102(2):227-43. PubMed ID: 7705502 [TBL] [Abstract][Full Text] [Related]
6. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats. Touvykine B; Elgbeili G; Quessy S; Dancause N J Neurophysiol; 2020 Apr; 123(4):1355-1368. PubMed ID: 32130080 [TBL] [Abstract][Full Text] [Related]
7. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways. Kunori N; Takashima I Eur J Neurosci; 2016 Dec; 44(11):2925-2934. PubMed ID: 27717064 [TBL] [Abstract][Full Text] [Related]
8. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas. Hira R; Ohkubo F; Tanaka YR; Masamizu Y; Augustine GJ; Kasai H; Matsuzaki M Front Neural Circuits; 2013; 7():55. PubMed ID: 23554588 [TBL] [Abstract][Full Text] [Related]
9. Interhemispheric connections of the ventral premotor cortex in a new world primate. Dancause N; Barbay S; Frost SB; Mahnken JD; Nudo RJ J Comp Neurol; 2007 Dec; 505(6):701-15. PubMed ID: 17948893 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats. Wang Y; Kurata K Brain Res; 1998 Jan; 781(1-2):137-47. PubMed ID: 9507093 [TBL] [Abstract][Full Text] [Related]
11. Topographically divergent and convergent connectivity between premotor and primary motor cortex. Dancause N; Barbay S; Frost SB; Plautz EJ; Popescu M; Dixon PM; Stowe AM; Friel KM; Nudo RJ Cereb Cortex; 2006 Aug; 16(8):1057-68. PubMed ID: 16221929 [TBL] [Abstract][Full Text] [Related]
12. A comparison of the ipsilateral cortical projections to the dorsal and ventral subdivisions of the macaque premotor cortex. Ghosh S; Gattera R Somatosens Mot Res; 1995; 12(3-4):359-78. PubMed ID: 8834308 [TBL] [Abstract][Full Text] [Related]
13. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections. Mohammed H; Jain N J Comp Neurol; 2014 Feb; 522(3):528-45. PubMed ID: 23853077 [TBL] [Abstract][Full Text] [Related]
14. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. Nishibe M; Barbay S; Guggenmos D; Nudo RJ J Neurotrauma; 2010 Dec; 27(12):2221-32. PubMed ID: 20873958 [TBL] [Abstract][Full Text] [Related]
15. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. Stepniewska I; Preuss TM; Kaas JH J Comp Neurol; 1993 Apr; 330(2):238-71. PubMed ID: 7684050 [TBL] [Abstract][Full Text] [Related]
16. Organization of the posterior parietal cortex in galagos: II. Ipsilateral cortical connections of physiologically identified zones within anterior sensorimotor region. Stepniewska I; Cerkevich CM; Fang PC; Kaas JH J Comp Neurol; 2009 Dec; 517(6):783-807. PubMed ID: 19844952 [TBL] [Abstract][Full Text] [Related]
17. Cortical, callosal, and thalamic connections from primary somatosensory cortex in the naked mole-rat (Heterocephalus glaber), with special emphasis on the connectivity of the incisor representation. Henry EC; Catania KC Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):626-45. PubMed ID: 16652365 [TBL] [Abstract][Full Text] [Related]
18. Corpus callosum connections of subdivisions of motor and premotor cortex, and frontal eye field in a prosimian primate, Otolemur garnetti. Fang PC; Stepniewska I; Kaas JH J Comp Neurol; 2008 Jun; 508(4):565-78. PubMed ID: 18383053 [TBL] [Abstract][Full Text] [Related]
19. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease. Karl JM; Sacrey LA; McDonald RJ; Whishaw IQ Brain Res Bull; 2008 Sep; 77(1):42-8. PubMed ID: 18639744 [TBL] [Abstract][Full Text] [Related]
20. Cortical connections of the functional domain for climbing or running in posterior parietal cortex of galagos. Wang Q; Liao CC; Stepniewska I; Gabi M; Kaas JH J Comp Neurol; 2021 Jul; 529(10):2789-2812. PubMed ID: 33550608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]