BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38265596)

  • 1. Enhanced biodegradable polyester film degradation in soil by sequential cooperation of yeast-derived esterase and microbial community.
    Tsuboi S; Hoshino YT; Yamamoto-Tamura K; Uenishi H; Omae N; Morita T; Sameshima-Yamashita Y; Kitamoto H; Kishimoto-Mo AW
    Environ Sci Pollut Res Int; 2024 Feb; 31(9):13941-13953. PubMed ID: 38265596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.
    Yamamoto-Tamura K; Hiradate S; Watanabe T; Koitabashi M; Sameshima-Yamashita Y; Yarimizu T; Kitamoto H
    AMB Express; 2015; 5():10. PubMed ID: 25852987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic degradation of poly-butylene succinate-co-adipate film in rice husks by yeast Pseudozyma antarctica in indoor conditions.
    Kitamoto H; Yoshida S; Koitabashi M; Yamamoto-Tamura K; Ueda H; Yarimizu T; Sameshima-Yamashita Y
    J Biosci Bioeng; 2018 Feb; 125(2):199-204. PubMed ID: 28958643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylose induces the phyllosphere yeast Pseudozyma antarctica to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics.
    Watanabe T; Shinozaki Y; Yoshida S; Koitabashi M; Sameshima-Yamashita Y; Fujii T; Fukuoka T; Kitamoto HK
    J Biosci Bioeng; 2014 Mar; 117(3):325-9. PubMed ID: 24095046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.
    Fukuoka T; Shinozaki Y; Tsuchiya W; Suzuki K; Watanabe T; Yamazaki T; Kitamoto D; Kitamoto H
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1733-1741. PubMed ID: 26512003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization.
    Shinozaki Y; Morita T; Cao XH; Yoshida S; Koitabashi M; Watanabe T; Suzuki K; Sameshima-Yamashita Y; Nakajima-Kambe T; Fujii T; Kitamoto HK
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2951-9. PubMed ID: 22678026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal community dynamics during degradation of poly(butylene succinate
    Yamamoto-Tamura K; Hoshino YT; Tsuboi S; Huang C; Kishimoto-Mo AW; Sameshima-Yamashita Y; Kitamoto H
    Biosci Biotechnol Biochem; 2020 May; 84(5):1077-1087. PubMed ID: 31959072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment with an esterase from the yeast Pseudozyma antarctica accelerates biodegradation of plastic mulch film in soil under laboratory conditions.
    Sameshima-Yamashita Y; Ueda H; Koitabashi M; Kitamoto H
    J Biosci Bioeng; 2019 Jan; 127(1):93-98. PubMed ID: 30054060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of a biodegradable plastic in forest soil: Dominant tree species and forest types drive changes in microbial community assembly, influence the composition of plastisphere, and affect poly(butylene succinate-co-adipate) degradation.
    Tanunchai B; Ji L; Schröder O; Gawol SJ; Geissler A; Wahdan SFM; Buscot F; Kalkhof S; Schulze ED; Noll M; Purahong W
    Sci Total Environ; 2023 May; 873():162230. PubMed ID: 36796697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics.
    Teeraphatpornchai T; Nakajima-Kambe T; Shigeno-Akutsu Y; Nakayama M; Nomura N; Nakahara T; Uchiyama H
    Biotechnol Lett; 2003 Jan; 25(1):23-8. PubMed ID: 12882301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Back to the Future: Decomposability of a Biobased and Biodegradable Plastic in Field Soil Environments and Its Microbiome under Ambient and Future Climates.
    Purahong W; Wahdan SFM; Heinz D; Jariyavidyanont K; Sungkapreecha C; Tanunchai B; Sansupa C; Sadubsarn D; Alaneed R; Heintz-Buschart A; Schädler M; Geissler A; Kressler J; Buscot F
    Environ Sci Technol; 2021 Sep; 55(18):12337-12351. PubMed ID: 34486373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated degradation of plastic products via yeast enzyme treatment.
    Kitamoto H; Koitabashi M; Sameshima-Yamashita Y; Ueda H; Takeuchi A; Watanabe T; Sato S; Saika A; Fukuoka T
    Sci Rep; 2023 Feb; 13(1):2386. PubMed ID: 36765090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
    Shah AA; Kato S; Shintani N; Kamini NR; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3437-47. PubMed ID: 24522729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.
    Koitabashi M; Noguchi MT; Sameshima-Yamashita Y; Hiradate S; Suzuki K; Yoshida S; Watanabe T; Shinozaki Y; Tsushima S; Kitamoto HK
    AMB Express; 2012 Aug; 2(1):40. PubMed ID: 22856640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid monomerization of poly(butylene succinate)-co-(butylene adipate) by Leptothrix sp.
    Nakajima-Kambe T; Toyoshima K; Saito C; Takaguchi H; Akutsu-Shigeno Y; Sato M; Miyama K; Nomura N; Uchiyama H
    J Biosci Bioeng; 2009 Dec; 108(6):513-6. PubMed ID: 19914585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen fixing bacteria facilitate microbial biodegradation of a bio-based and biodegradable plastic in soils under ambient and future climatic conditions.
    Tanunchai B; Kalkhof S; Guliyev V; Wahdan SFM; Krstic D; Schädler M; Geissler A; Glaser B; Buscot F; Blagodatskaya E; Noll M; Purahong W
    Environ Sci Process Impacts; 2022 Feb; 24(2):233-241. PubMed ID: 35048922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark side of a bio-based and biodegradable plastic? Assessment of pathogenic microbes associated with poly(butylene succinate-co-adipate) under ambient and future climates using next-generation sequencing.
    Juncheed K; Tanunchai B; Wahdan SFM; Thongsuk K; Schädler M; Noll M; Purahong W
    Front Plant Sci; 2022; 13():966363. PubMed ID: 36311114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of Bio-Based and Biodegradable Plastic and Its Contribution to Soil Organic Carbon Stock.
    Guliyev V; Tanunchai B; Udovenko M; Menyailo O; Glaser B; Purahong W; Buscot F; Blagodatskaya E
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic.
    Uchida H; Nakajima-Kambe T; Shigeno-Akutsu Y; Nomura N; Tokiwa Y; Nakahara T
    FEMS Microbiol Lett; 2000 Aug; 189(1):25-9. PubMed ID: 10913861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the mechanism of enhanced anaerobic biodegradation of biodegradable plastics after alkaline pretreatment.
    Jin Y; Sun X; Song C; Cai F; Liu G; Chen C
    Sci Total Environ; 2023 May; 873():162324. PubMed ID: 36813202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.