These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38265721)

  • 1. Nod Factor Lipopolysaccharide Purification to Study Nitrogen-Fixing Bacteria Symbiosis with Legumes.
    Jacott CN; Lozano-Morillo S; Del Cerro P
    Methods Mol Biol; 2024; 2751():237-245. PubMed ID: 38265721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis.
    Debellé F; Moulin L; Mangin B; Dénarié J; Boivin C
    Acta Biochim Pol; 2001; 48(2):359-65. PubMed ID: 11732607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application.
    Chen WF; Wang ET; Ji ZJ; Zhang JJ
    J Appl Microbiol; 2021 Aug; 131(2):553-563. PubMed ID: 33300250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for Isolation and Characterization of Nitrogen-Fixing Legume-Nodulating Bacteria.
    Tak N; Bissa G; Gehlot HS
    Methods Mol Biol; 2020; 2057():119-143. PubMed ID: 31595476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplication of Symbiotic Lysin Motif Receptors Predates the Evolution of Nitrogen-Fixing Nodule Symbiosis.
    Rutten L; Miyata K; Roswanjaya YP; Huisman R; Bu F; Hartog M; Linders S; van Velzen R; van Zeijl A; Bisseling T; Kohlen W; Geurts R
    Plant Physiol; 2020 Oct; 184(2):1004-1023. PubMed ID: 32669419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomics of the nonlegume
    van Velzen R; Holmer R; Bu F; Rutten L; van Zeijl A; Liu W; Santuari L; Cao Q; Sharma T; Shen D; Roswanjaya Y; Wardhani TAK; Kalhor MS; Jansen J; van den Hoogen J; Güngör B; Hartog M; Hontelez J; Verver J; Yang WC; Schijlen E; Repin R; Schilthuizen M; Schranz ME; Heidstra R; Miyata K; Fedorova E; Kohlen W; Bisseling T; Smit S; Geurts R
    Proc Natl Acad Sci U S A; 2018 May; 115(20):E4700-E4709. PubMed ID: 29717040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism using mathematical modeling.
    Moyano G; Marco D; Knopoff D; Torres G; Turner C
    Math Biosci; 2017 Oct; 292():30-35. PubMed ID: 28711576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying legume-rhizobium symbioses.
    Yang J; Lan L; Jin Y; Yu N; Wang D; Wang E
    J Integr Plant Biol; 2022 Feb; 64(2):244-267. PubMed ID: 34962095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary origin of rhizobium Nod factor signaling.
    Streng A; op den Camp R; Bisseling T; Geurts R
    Plant Signal Behav; 2011 Oct; 6(10):1510-4. PubMed ID: 21904113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mutant-based analysis of the establishment of Nod-independent symbiosis in the legume Aeschynomene evenia.
    Quilbé J; Nouwen N; Pervent M; Guyonnet R; Cullimore J; Gressent F; Araújo NH; Gully D; Klopp C; Giraud E; Arrighi JF
    Plant Physiol; 2022 Sep; 190(2):1400-1417. PubMed ID: 35876558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type III effector provides a novel symbiotic pathway in legume-rhizobia symbiosis.
    Ratu STN; Amelia L; Okazaki S
    Biosci Biotechnol Biochem; 2022 Dec; 87(1):28-37. PubMed ID: 36367542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytohormone regulation of legume-rhizobia interactions.
    Ferguson BJ; Mathesius U
    J Chem Ecol; 2014 Jul; 40(7):770-90. PubMed ID: 25052910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nod factor perception: an integrative view of molecular communication during legume symbiosis.
    Ghantasala S; Roy Choudhury S
    Plant Mol Biol; 2022 Dec; 110(6):485-509. PubMed ID: 36040570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legume-rhizobium dance: an agricultural tool that could be improved?
    Basile LA; Lepek VC
    Microb Biotechnol; 2021 Sep; 14(5):1897-1917. PubMed ID: 34318611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes.
    de Faria SM; Ringelberg JJ; Gross E; Koenen EJM; Cardoso D; Ametsitsi GKD; Akomatey J; Maluk M; Tak N; Gehlot HS; Wright KM; Teaumroong N; Songwattana P; de Lima HC; Prin Y; Zartman CE; Sprent JI; Ardley J; Hughes CE; James EK
    New Phytol; 2022 Sep; 235(6):2365-2377. PubMed ID: 35901264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by
    Speck JJ; James EK; Sugawara M; Sadowsky MJ; Gyaneshwar P
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31562172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of microRNAs in the legume-Rhizobium nitrogen-fixing symbiosis.
    Hoang NT; Tóth K; Stacey G
    J Exp Bot; 2020 Mar; 71(5):1668-1680. PubMed ID: 32163588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground.
    Kouchi H; Imaizumi-Anraku H; Hayashi M; Hakoyama T; Nakagawa T; Umehara Y; Suganuma N; Kawaguchi M
    Plant Cell Physiol; 2010 Sep; 51(9):1381-97. PubMed ID: 20660226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium-Legume Symbiosis.
    Jiménez-Guerrero I; Medina C; Vinardell JM; Ollero FJ; López-Baena FJ
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses.
    Mathesius U
    J Plant Physiol; 2022 Sep; 276():153765. PubMed ID: 35952452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.