BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38265744)

  • 1. Global spatial distribution of Prosopis juliflora - one of the world's worst 100 invasive alien species under changing climate using multiple machine learning models.
    Pasha SV; Reddy CS
    Environ Monit Assess; 2024 Jan; 196(2):196. PubMed ID: 38265744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: implications for environmental monitoring and risk assessment.
    Heshmati I; Khorasani N; Shams-Esfandabad B; Riazi B
    Environ Monit Assess; 2019 Jan; 191(2):72. PubMed ID: 30648210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of climate change on current and future invasion of
    Sintayehu DW; Dalle G; Bobasa AF
    Heliyon; 2020 Aug; 6(8):e04596. PubMed ID: 32775750
    [No Abstract]   [Full Text] [Related]  

  • 4. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia.
    Shiferaw H; Bewket W; Alamirew T; Zeleke G; Teketay D; Bekele K; Schaffner U; Eckert S
    Sci Total Environ; 2019 Jul; 675():354-366. PubMed ID: 31030142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential distribution of selected invasive alien plants under current and future climate change scenarios in South Africa.
    Mengistu AG; Tesfuhuney WA; Woyessa YE; Steyn AS
    Heliyon; 2023 Sep; 9(9):e19867. PubMed ID: 37809438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the habitat suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables.
    Azrag AG; Mohamed SA; Ndlela S; Ekesi S
    Pest Manag Sci; 2022 Oct; 78(10):4114-4126. PubMed ID: 35657692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How vegetation cover characteristics response to the spread of Prosopis juliflora: a time-series remote sensing analysis in southern Iran.
    Izadi F; Chamani A; Zamani-Ahmadmahmoodi R
    Environ Monit Assess; 2022 May; 194(6):401. PubMed ID: 35505172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performances of machine learning algorithms for mapping fractional cover of an invasive plant species in a dryland ecosystem.
    Shiferaw H; Bewket W; Eckert S
    Ecol Evol; 2019 Mar; 9(5):2562-2574. PubMed ID: 30891200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia.
    Wakie TT; Evangelista PH; Jarnevich CS; Laituri M
    PLoS One; 2014; 9(11):e112854. PubMed ID: 25393396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global spatial distribution of Chromolaena odorata habitat under climate change: random forest modeling of one of the 100 worst invasive alien species.
    Adhikari P; Lee YH; Poudel A; Hong SH; Park YS
    Sci Rep; 2023 Jun; 13(1):9745. PubMed ID: 37328479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran.
    Morovati M; Karami P; Bahadori Amjas F
    PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Invasion Risk Assessment of
    Dakhil MA; El-Keblawy A; El-Sheikh MA; Halmy MWA; Ksiksi T; Hassan WA
    Biology (Basel); 2021 Mar; 10(3):. PubMed ID: 33803081
    [No Abstract]   [Full Text] [Related]  

  • 13. Seed germination and early seedling survival of the invasive species
    Nascimento CES; da Silva CAD; Leal IR; Tavares WS; Serrão JE; Zanuncio JC; Tabarelli M
    PeerJ; 2020; 8():e9607. PubMed ID: 32953255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of land use/land cover: implications on environmental resources and human livelihoods in the Middle Awash Valley of Ethiopia.
    Abebe MT; Degefu MA; Assen M; Legass A
    Environ Monit Assess; 2022 Sep; 194(11):833. PubMed ID: 36166173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invasive Mesquite (
    Hussain MI; Shackleton RT; El-Keblawy A; Del Mar Trigo Pérez M; González L
    Plants (Basel); 2020 Jan; 9(2):. PubMed ID: 31979176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change.
    Wani IA; Khan S; Verma S; Al-Misned FA; Shafik HM; El-Serehy HA
    Sci Rep; 2022 Aug; 12(1):13205. PubMed ID: 35915126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)?
    Padalia H; Srivastava V; Kushwaha SP
    Environ Monit Assess; 2015 Apr; 187(4):210. PubMed ID: 25810084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate.
    Kamal M; Kenawy MA; Rady MH; Khaled AS; Samy AM
    PLoS One; 2018; 13(12):e0210122. PubMed ID: 30596764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change.
    Ahmad R; Khuroo AA; Charles B; Hamid M; Rashid I; Aravind NA
    Sci Rep; 2019 Aug; 9(1):11395. PubMed ID: 31388050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area.
    Shabani F; Kumar L; Ahmadi M
    Ecol Evol; 2016 Aug; 6(16):5973-86. PubMed ID: 27547370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.