BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3826613)

  • 1. The measurement of xylulose 5-phosphate, ribulose 5-phosphate, and combined sedoheptulose 7-phosphate and ribose 5-phosphate in liver tissue.
    Casazza JP; Veech RL
    Anal Biochem; 1986 Dec; 159(2):243-8. PubMed ID: 3826613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The content of pentose-cycle intermediates in liver in starved, fed ad libitum and meal-fed rats.
    Casazza JP; Veech RL
    Biochem J; 1986 Jun; 236(3):635-41. PubMed ID: 3790084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interdependence of glycolytic and pentose cycle intermediates in ad libitum fed rats.
    Casazza JP; Veech RL
    J Biol Chem; 1986 Jan; 261(2):690-8. PubMed ID: 3079759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and analysis of mixtures of D-ribose 5-phosphate, D-ribulose 5-phosphate, and D-xylulose 5-phosphate.
    Wood T
    Methods Enzymol; 1975; 41():37-40. PubMed ID: 1092962
    [No Abstract]   [Full Text] [Related]  

  • 5. The oxidative pentose phosphate cycle. III. The interconversion of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate.
    TABACHNICK M; SRERE PA; COOPER J; RACKER E
    Arch Biochem Biophys; 1958 Apr; 74(2):315-25. PubMed ID: 13534662
    [No Abstract]   [Full Text] [Related]  

  • 6. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative nd non-oxidative reactions and related enzymes of the cycle in adipose tissue.
    Gumaa KA; Novello F; McLean P
    Biochem J; 1969 Sep; 114(2):253-64. PubMed ID: 5810081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC-IDMS.
    Cipollina C; ten Pierick A; Canelas AB; Seifar RM; van Maris AJ; van Dam JC; Heijnen JJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):3231-6. PubMed ID: 19647496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preparation of transketolase free from D-ribulose-5-phosphate 3-epimerase.
    Wood T
    Biochim Biophys Acta; 1981 Jun; 659(2):233-43. PubMed ID: 7196263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxyribose 1-phosphate: radioenzymatic and spectrophotometric assays.
    Ipata PL; Tozzi MG
    J Biochem Biophys Methods; 1984 Sep; 9(4):343-50. PubMed ID: 6436359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic phosphoribosyl pyrophosphate concentration. Regulation by the oxidative pentose phosphate pathway and cellular energy status.
    Kunjara S; Sochor M; Ali SA; Greenbaum AL; McLean P
    Biochem J; 1987 May; 244(1):101-8. PubMed ID: 2444209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.
    Grochowski LL; Xu H; White RH
    J Bacteriol; 2005 Nov; 187(21):7382-9. PubMed ID: 16237021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoribosylpyrophosphate synthesis from glucose decreases during amino acid starvation of human lymphoblasts.
    Boss GR; Pilz RB
    J Biol Chem; 1985 May; 260(10):6054-9. PubMed ID: 2581946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver.
    Novello F; Gumaa JA; McLean P
    Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Kinetic properties of transketolase from the rat liver in a reaction with xylulose-5-phosphate and ribose-5-phosphate].
    Gorbach ZV; Kubyshin VL
    Biokhimiia; 1989 Dec; 54(12):1980-5. PubMed ID: 2633802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrophotometric and radioenzymatic determination of ribose-5-phosphate.
    Tozzi MG; Sgarrella F; Del Corso A; Ipata PL
    J Biochem Biophys Methods; 1984 Dec; 10(3-4):163-71. PubMed ID: 6530507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of D-arabinose-5-phosphate and D-sedoheptulose-7-phosphate by the hexose phosphate transport system of Salmonella typhimurium.
    Eidels L; Rick PD; Stimler NP; Osborn MJ
    J Bacteriol; 1974 Jul; 119(1):138-43. PubMed ID: 4600697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentose phosphate pathway in rat colonic epithelium.
    Butler RN; Arora KK; Collins JG; Flanigan I; Lawson MJ; Roberts-Thomson IC; Williams JF
    Biochem Int; 1990 Oct; 22(2):249-60. PubMed ID: 1965276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy.
    Teleman A; Richard P; Toivari M; Penttilä M
    Anal Biochem; 1999 Jul; 272(1):71-9. PubMed ID: 10405295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling of pentose phosphate pathway intermediates in blood spots by tandem mass spectrometry: application to transaldolase deficiency.
    Huck JH; Struys EA; Verhoeven NM; Jakobs C; van der Knaap MS
    Clin Chem; 2003 Aug; 49(8):1375-80. PubMed ID: 12881455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.