These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38266239)

  • 1. Characterizing the Opportunity Space for Sustainable Hydrothermal Valorization of Wet Organic Wastes.
    Feng J; Li Y; Strathmann TJ; Guest JS
    Environ Sci Technol; 2024 Feb; 58(5):2528-2541. PubMed ID: 38266239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techno-economic Analysis of Sustainable Biofuels for Marine Transportation.
    Li S; Tan ECD; Dutta A; Snowden-Swan LJ; Thorson MR; Ramasamy KK; Bartling AW; Brasington R; Kass MD; Zaimes GG; Hawkins TR
    Environ Sci Technol; 2022 Dec; 56(23):17206-17214. PubMed ID: 36409825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood.
    Masum FH; Zaimes GG; Tan ECD; Li S; Dutta A; Ramasamy KK; Hawkins TR
    Environ Sci Technol; 2023 Aug; 57(34):12701-12712. PubMed ID: 37590157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Municipal wastewater sludge as a renewable, cost-effective feedstock for transportation biofuels using hydrothermal liquefaction.
    Seiple TE; Skaggs RL; Fillmore L; Coleman AM
    J Environ Manage; 2020 Sep; 270():110852. PubMed ID: 32501239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wet organic waste treatment via hydrothermal processing: A critical review.
    Marzbali MH; Kundu S; Halder P; Patel S; Hakeem IG; Paz-Ferreiro J; Madapusi S; Surapaneni A; Shah K
    Chemosphere; 2021 Sep; 279():130557. PubMed ID: 33894517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on anaerobic membrane bioreactors for enhanced valorization of urban organic wastes: Achievements, limitations, energy balance and future perspectives.
    Hu Y; Cai X; Du R; Yang Y; Rong C; Qin Y; Li YY
    Sci Total Environ; 2022 May; 820():153284. PubMed ID: 35066041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.
    Bratina B; Šorgo A; Kramberger J; Ajdnik U; Zemljič LF; Ekart J; Šafarič R
    J Environ Manage; 2016 Dec; 183(Pt 3):1009-1025. PubMed ID: 27692514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle energy use and greenhouse gas emissions for a novel algal-osmosis membrane system versus conventional advanced potable water reuse processes: Part I.
    Lugo A; Bandara GLCL; Xu X; Penteado de Almeida J; Abeysiriwardana-Arachchige ISA; Nirmalakhandan N; Xu P
    J Environ Manage; 2023 Apr; 331():117293. PubMed ID: 36657205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels.
    Marrone PA; Elliott DC; Billing JM; Hallen RT; Hart TR; Kadota P; Moeller JC; Randel MA; Schmidt AJ
    Water Environ Res; 2018 Apr; 90(4):329-342. PubMed ID: 30188275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofertilizer recovery from organic solid wastes via hydrothermal liquefaction.
    Munasinghe-Arachchige SP; Abeysiriwardana-Arachchige ISA; Delanka-Pedige HMK; Nirmalakhandan N
    Bioresour Technol; 2021 Oct; 338():125497. PubMed ID: 34256220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas production from anaerobic digestion of food waste and relevant air quality implications.
    Kuo J; Dow J
    J Air Waste Manag Assoc; 2017 Sep; 67(9):1000-1011. PubMed ID: 28498738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart Approaches to Food Waste Final Disposal.
    Cecchi F; Cavinato C
    Int J Environ Res Public Health; 2019 Aug; 16(16):. PubMed ID: 31405093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techno-Economic Analysis of the Production of Liquid Biofuels from Sewage Sludge via Hydrothermal Liquefaction.
    Del Alamo G; Bugge M; Pedersen TH; Rosendahl L
    Energy Fuels; 2023 Jan; 37(2):1131-1150. PubMed ID: 36705626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction.
    Jena U; McCurdy AT; Warren A; Summers H; Ledbetter RN; Hoekman SK; Seefeldt LC; Quinn JC
    Biotechnol Biofuels; 2015; 8():167. PubMed ID: 26468320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous-phase product treatment and monetization options of wet waste hydrothermal liquefaction: Comprehensive techno-economic and life-cycle GHG emission assessment unveiling research opportunities.
    Jiang Y; Ou L; Snowden-Swan L; Cai H; Li S; Ramasamy K; Schmidt A; Wang H; Santosa DM; Olarte MV; Guo M; Thorson MR
    Bioresour Technol; 2024 Apr; 397():130504. PubMed ID: 38423484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel.
    LeClerc HO; Tompsett GA; Paulsen AD; McKenna AM; Niles SF; Reddy CM; Nelson RK; Cheng F; Teixeira AR; Timko MT
    iScience; 2022 Sep; 25(9):104916. PubMed ID: 36148430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction.
    Summers HM; Ledbetter RN; McCurdy AT; Morgan MR; Seefeldt LC; Jena U; Hoekman SK; Quinn JC
    Bioresour Technol; 2015 Nov; 196():431-40. PubMed ID: 26276094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental impact of sewage sludge co-digestion with food waste and fat-oil-grease: Integrating plant-wide modeling with life cycle assessment approach.
    Daskiran F; Gulhan H; Kara E; Guven H; Ozgun H; Ersahin ME
    Bioresour Technol; 2024 Feb; 394():130198. PubMed ID: 38103751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.