These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38266246)

  • 1. Patternable Process-Induced Strain in 2D Monolayers and Heterobilayers.
    Zhang Y; Hossain MA; Hwang KJ; Ferrari PF; Maduzia J; Peña T; Wu SM; Ertekin E; van der Zande AM
    ACS Nano; 2024 Feb; 18(5):4205-4215. PubMed ID: 38266246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Carrier Mobility in Monolayer MoS
    Zhang Y; Zhao HL; Huang S; Hossain MA; van der Zande AM
    ACS Nano; 2024 May; 18(19):12377-12385. PubMed ID: 38701373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Strain-Tunable Interlayer Excitons in MoS
    Cho C; Wong J; Taqieddin A; Biswas S; Aluru NR; Nam S; Atwater HA
    Nano Lett; 2021 May; 21(9):3956-3964. PubMed ID: 33914542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraordinary Phonon Displacement and Giant Resonance Raman Enhancement in WSe
    Rahman S; Sun X; Zhu Y; Lu Y
    ACS Nano; 2022 Dec; 16(12):21505-21517. PubMed ID: 36441581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions.
    Bai Y; Zhou L; Wang J; Wu W; McGilly LJ; Halbertal D; Lo CFB; Liu F; Ardelean J; Rivera P; Finney NR; Yang XC; Basov DN; Yao W; Xu X; Hone J; Pasupathy AN; Zhu XY
    Nat Mater; 2020 Oct; 19(10):1068-1073. PubMed ID: 32661380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain regulated interlayer coupling in WSe
    Xu X; Wang C; Xiong W; Liu Y; Yang D; Zhang X; Xu J
    Nanotechnology; 2021 Dec; 33(8):. PubMed ID: 34787100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conduction Band Replicas in a 2D Moiré Semiconductor Heterobilayer.
    Graham AJ; Park H; Nguyen PV; Nunn J; Kandyba V; Cattelan M; Giampietri A; Barinov A; Watanabe K; Taniguchi T; Andreev A; Rudner M; Xu X; Wilson NR; Cobden DH
    Nano Lett; 2024 May; 24(17):5117-5124. PubMed ID: 38629940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS
    Pan Y; Fölsch S; Nie Y; Waters D; Lin YC; Jariwala B; Zhang K; Cho K; Robinson JA; Feenstra RM
    Nano Lett; 2018 Mar; 18(3):1849-1855. PubMed ID: 29415536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical generation of high carrier densities in 2D semiconductor heterobilayers.
    Wang J; Ardelean J; Bai Y; Steinhoff A; Florian M; Jahnke F; Xu X; Kira M; Hone J; Zhu XY
    Sci Adv; 2019 Sep; 5(9):eaax0145. PubMed ID: 31548986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Photon Management and Strain-Induced Band Gap Engineering of Two-Dimensional MoS
    Gao X; Fu S; Fang T; Yu X; Wang H; Ji Q; Kong J; Wang X; Liu J
    ACS Appl Mater Interfaces; 2023 May; 15(19):23564-23572. PubMed ID: 37130097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flat Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS
    Waters D; Nie Y; Lüpke F; Pan Y; Fölsch S; Lin YC; Jariwala B; Zhang K; Wang C; Lv H; Cho K; Xiao D; Robinson JA; Feenstra RM
    ACS Nano; 2020 Jun; 14(6):7564-7573. PubMed ID: 32496750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realizing Optoelectronic Devices from Crumpled Two-Dimensional Material Heterostructures.
    Hossain MA; Yu J; van der Zande AM
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48910-48916. PubMed ID: 32975108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation and Modulation of High-Temperature Moiré-Locale Excitons in van der Waals Heterobilayers.
    Ge C; Zhang D; Xiao F; Zhao H; He M; Huang L; Hou S; Tong Q; Pan A; Wang X
    ACS Nano; 2023 Aug; 17(16):16115-16122. PubMed ID: 37560986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional hybrid layered materials: strain engineering on the band structure of MoS
    Gu K; Yu S; Eshun K; Yuan H; Ye H; Tang J; Ioannou DE; Xiao C; Wang H; Li Q
    Nanotechnology; 2017 Sep; 28(36):365202. PubMed ID: 28627501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures.
    Han J; Yue X; Shan Y; Chen J; Ekoya BGM; Hu L; Liu R; Qiu Z; Cong C
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures.
    Wilson NR; Nguyen PV; Seyler K; Rivera P; Marsden AJ; Laker ZP; Constantinescu GC; Kandyba V; Barinov A; Hine ND; Xu X; Cobden DH
    Sci Adv; 2017 Feb; 3(2):e1601832. PubMed ID: 28246636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Elastic Strain Engineering of 2D Materials and Their Twisted Bilayers.
    Han Y; Gao L; Zhou J; Hou Y; Jia Y; Cao K; Duan K; Lu Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8655-8663. PubMed ID: 35147415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures.
    Liu Y; Fang H; Rasmita A; Zhou Y; Li J; Yu T; Xiong Q; Zheludev N; Liu J; Gao W
    Sci Adv; 2019 Apr; 5(4):eaav4506. PubMed ID: 31032409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.