BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38266319)

  • 1. Upscaling ground-based backpack gamma-ray spectrometry to spatial resolution of UAV-based gamma-ray spectrometry for system validation.
    Altfelder S; Preugschat B; Matos M; Kandzia F; Wiens B; Eshmuradov O; Kunze C
    J Environ Radioact; 2024 Mar; 273():107382. PubMed ID: 38266319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing gamma-ray spectrometers for UAV-borne surveys with geophysical applications.
    van der Veeke S; Limburg J; Koomans RL; Söderström M; van der Graaf ER
    J Environ Radioact; 2021 Oct; 237():106717. PubMed ID: 34419768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.
    Šálek O; Matolín M; Gryc L
    J Environ Radioact; 2018 Feb; 182():101-107. PubMed ID: 29220714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne gamma-ray mapping using fixed-wing vertical take-off and landing (VTOL) uncrewed aerial vehicles.
    Woodbridge E; Connor DT; Verbelen Y; Hine D; Richardson T; Scott TB
    Front Robot AI; 2023; 10():1137763. PubMed ID: 37448876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of unmanned aerial systems for the mapping of legacy uranium mines.
    Martin PG; Payton OD; Fardoulis JS; Richards DA; Scott TB
    J Environ Radioact; 2015 May; 143():135-140. PubMed ID: 25771221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India - A comparative study of dose rates estimated by AGRS and PGRS.
    Srinivas D; Ramesh Babu V; Patra I; Tripathi S; Ramayya MS; Chaturvedi AK
    J Environ Radioact; 2017 Feb; 167():1-12. PubMed ID: 27914775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerial measurements on uranium ore mining, milling and processing areas in Germany.
    Winkelmann I; Thomas M; Vogl K
    J Environ Radioact; 2001; 53(3):301-11. PubMed ID: 11379059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Footprint and height corrections for UAV-borne gamma-ray spectrometry studies.
    van der Veeke S; Limburg J; Koomans RL; Söderström M; de Waal SN; van der Graaf ER
    J Environ Radioact; 2021 May; 231():106545. PubMed ID: 33601321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of airborne and terrestrial gamma spectrometry measurements - evaluation of three areas in southern Sweden.
    Kock P; Samuelsson C
    J Environ Radioact; 2011 Jun; 102(6):605-13. PubMed ID: 21481503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of environmental factors on the monitoring of environmental radioactivity by airborne gamma-ray spectrometry.
    Amestoy J; Meslin PY; Richon P; Delpuech A; Derrien S; Raynal H; Pique É; Baratoux D; Chotard P; Van Beek P; Souhaut M; Zambardi T
    J Environ Radioact; 2021 Oct; 237():106695. PubMed ID: 34332827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.
    Bollhöfer A; Beraldo A; Pfitzner K; Esparon A; Doering C
    Sci Total Environ; 2014 Jan; 468-469():764-73. PubMed ID: 24076500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.
    Youssef MA
    J Environ Radioact; 2016 Feb; 152():75-84. PubMed ID: 26650828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiological site characterizations: gamma surveys, gamma/226Ra correlations, and related spatial analysis techniques.
    Whicker R; Cartier P; Cain J; Milmine K; Griffin M
    Health Phys; 2008 Nov; 95(5 Suppl):S180-9. PubMed ID: 18849712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complimentary tool in the determination of activity concentrations of naturally occurring radionuclides.
    Olise FS; Owoade OK; Olaniyi HB; Obiajunwa EI
    J Environ Radioact; 2010 Nov; 101(11):910-4. PubMed ID: 20637532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source identification of uranium-containing materials at mine legacy sites in Portugal.
    Keatley AC; Martin PG; Hallam KR; Payton OD; Awbery R; Carvalho FP; Oliveira JM; Silva L; Malta M; Scott TB
    J Environ Radioact; 2018 Mar; 183():102-111. PubMed ID: 29331769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona.
    Marsac KE; Burnley PC; Adcock CT; Haber DA; Malchow RL; Hausrath EM
    J Environ Radioact; 2016 Dec; 165():68-85. PubMed ID: 27640123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma dose rate distribution in the Unegt subbasin, a uranium deposit area in Dornogobi Province, southeastern Mongolia.
    Omori Y; Sorimachi A; Gun-Aajav M; Enkhgerel N; Munkherdene G; Oyunbolor G; Shajbalidir A; Palam E; Yamada C
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33494-33506. PubMed ID: 31529344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.
    Beamish D
    J Environ Radioact; 2014 Dec; 138():249-63. PubMed ID: 25264940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method for determination of natural and depleted uranium in surface soil samples.
    Vukanac I; Novković D; Kandić A; Djurasević M; Milosević Z
    Appl Radiat Isot; 2010; 68(7-8):1433-4. PubMed ID: 20022756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranium decay daughters from isolated mines: Accumulation and sources.
    Cuvier A; Panza F; Pourcelot L; Foissard B; Cagnat X; Prunier J; van Beek P; Souhaut M; Le Roux G
    J Environ Radioact; 2015 Nov; 149():110-20. PubMed ID: 26232768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.