These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38266324)
1. Self-lysis microbial consortia for predictable multi-proteins assembly. Zhang X; Li P; Wang W; Zhao W; Dai S; Wang J; Li N; Dai Z Bioorg Chem; 2024 Mar; 144():107117. PubMed ID: 38266324 [TBL] [Abstract][Full Text] [Related]
2. Top-down and bottom-up microbiome engineering approaches to enable biomanufacturing from waste biomass. Lyu X; Nuhu M; Candry P; Wolfanger J; Betenbaugh M; Saldivar A; Zuniga C; Wang Y; Shrestha S J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 39003244 [TBL] [Abstract][Full Text] [Related]
3. Single strain control of microbial consortia. Fedorec AJH; Karkaria BD; Sulu M; Barnes CP Nat Commun; 2021 Mar; 12(1):1977. PubMed ID: 33785746 [TBL] [Abstract][Full Text] [Related]
4. Versatile biomanufacturing through stimulus-responsive cell-material feedback. Dai Z; Lee AJ; Roberts S; Sysoeva TA; Huang S; Dzuricky M; Yang X; Zhang X; Liu Z; Chilkoti A; You L Nat Chem Biol; 2019 Oct; 15(10):1017-1024. PubMed ID: 31527836 [TBL] [Abstract][Full Text] [Related]
5. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Padmaperuma G; Kapoore RV; Gilmour DJ; Vaidyanathan S Crit Rev Biotechnol; 2018 Aug; 38(5):690-703. PubMed ID: 29233009 [TBL] [Abstract][Full Text] [Related]
6. Engineering consortia by polymeric microbial swarmbots. Wang L; Zhang X; Tang C; Li P; Zhu R; Sun J; Zhang Y; Cui H; Ma J; Song X; Zhang W; Gao X; Luo X; You L; Chen Y; Dai Z Nat Commun; 2022 Jul; 13(1):3879. PubMed ID: 35790722 [TBL] [Abstract][Full Text] [Related]
7. Synthetic microbial consortia enable rapid assembly of pure translation machinery. Villarreal F; Contreras-Llano LE; Chavez M; Ding Y; Fan J; Pan T; Tan C Nat Chem Biol; 2018 Jan; 14(1):29-35. PubMed ID: 29131146 [TBL] [Abstract][Full Text] [Related]
9. Engineering microbial consortia for controllable outputs. Lindemann SR; Bernstein HC; Song HS; Fredrickson JK; Fields MW; Shou W; Johnson DR; Beliaev AS ISME J; 2016 Sep; 10(9):2077-84. PubMed ID: 26967105 [TBL] [Abstract][Full Text] [Related]
10. Applications of synthetic light-driven microbial consortia for biochemicals production. Gao H; Manishimwe C; Yang L; Wang H; Jiang Y; Jiang W; Zhang W; Xin F; Jiang M Bioresour Technol; 2022 May; 351():126954. PubMed ID: 35288267 [TBL] [Abstract][Full Text] [Related]
11. Design of stable and self-regulated microbial consortia for chemical synthesis. Li X; Zhou Z; Li W; Yan Y; Shen X; Wang J; Sun X; Yuan Q Nat Commun; 2022 Mar; 13(1):1554. PubMed ID: 35322005 [TBL] [Abstract][Full Text] [Related]
12. Electrogenetic signaling and information propagation for controlling microbial consortia via programmed lysis. VanArsdale E; Navid A; Chu MJ; Halvorsen TM; Payne GF; Jiao Y; Bentley WE; Yung MC Biotechnol Bioeng; 2023 May; 120(5):1366-1381. PubMed ID: 36710487 [TBL] [Abstract][Full Text] [Related]
13. Biopharmaceutical Industry Approaches to Facility Segregation for Viral Safety: An Effort from the Consortium on Adventitious Agent Contamination in Biomanufacturing. Barone PW; Avgerinos S; Ballard R; Brussel A; Clark P; Dowd C; Gerentes L; Hart I; Keumurian FJ; Kindermann J; Leung JC; Ly N; Mink S; Minning S; Mullberg J; Murphy M; Nöske K; Parriott S; Shum B; Wiebe ME; Springs SL PDA J Pharm Sci Technol; 2019; 73(2):191-203. PubMed ID: 30361281 [TBL] [Abstract][Full Text] [Related]
14. A light tunable differentiation system for the creation and control of consortia in yeast. Aditya C; Bertaux F; Batt G; Ruess J Nat Commun; 2021 Oct; 12(1):5829. PubMed ID: 34611168 [TBL] [Abstract][Full Text] [Related]
15. Optimal protein production by a synthetic microbial consortium: coexistence, distribution of labor, and syntrophy. Martínez C; Cinquemani E; Jong H; Gouzé JL J Math Biol; 2023 Jul; 87(1):23. PubMed ID: 37395814 [TBL] [Abstract][Full Text] [Related]
16. Biotechnological potential and applications of microbial consortia. Qian X; Chen L; Sui Y; Chen C; Zhang W; Zhou J; Dong W; Jiang M; Xin F; Ochsenreither K Biotechnol Adv; 2020; 40():107500. PubMed ID: 31862233 [TBL] [Abstract][Full Text] [Related]
17. Reprogramming microbial populations using a programmed lysis system to improve chemical production. Diao W; Guo L; Ding Q; Gao C; Hu G; Chen X; Li Y; Zhang L; Chen W; Chen J; Liu L Nat Commun; 2021 Nov; 12(1):6886. PubMed ID: 34824227 [TBL] [Abstract][Full Text] [Related]
18. Environment Constrains Fitness Advantages of Division of Labor in Microbial Consortia Engineered for Metabolite Push or Pull Interactions. Beck AE; Pintar K; Schepens D; Schrammeck A; Johnson T; Bleem A; Du M; Harcombe WR; Bernstein HC; Heys JJ; Gedeon T; Carlson RP mSystems; 2022 Aug; 7(4):e0005122. PubMed ID: 35762764 [TBL] [Abstract][Full Text] [Related]
19. Programming Dynamic Division of Labor Using Horizontal Gene Transfer. Hamrick GS; Maddamsetti R; Son HI; Wilson ML; Davis HM; You L ACS Synth Biol; 2024 Apr; 13(4):1142-1151. PubMed ID: 38568420 [TBL] [Abstract][Full Text] [Related]
20. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Cortes-Tolalpa L; Jiménez DJ; de Lima Brossi MJ; Salles JF; van Elsas JD Appl Microbiol Biotechnol; 2016 Sep; 100(17):7713-25. PubMed ID: 27170322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]