These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38266616)
1. Cellular nucleus image-based smarter microscope system for single cell analysis. Wang W; Yang L; Sun H; Peng X; Yuan J; Zhong W; Chen J; He X; Ye L; Zeng Y; Gao Z; Li Y; Qu X Biosens Bioelectron; 2024 Apr; 250():116052. PubMed ID: 38266616 [TBL] [Abstract][Full Text] [Related]
2. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images. Haass-Koffler CL; Naeemuddin M; Bartlett SE J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512 [TBL] [Abstract][Full Text] [Related]
3. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. Buggenthin F; Marr C; Schwarzfischer M; Hoppe PS; Hilsenbeck O; Schroeder T; Theis FJ BMC Bioinformatics; 2013 Oct; 14():297. PubMed ID: 24090363 [TBL] [Abstract][Full Text] [Related]
4. A practical guide to intelligent image-activated cell sorting. Isozaki A; Mikami H; Hiramatsu K; Sakuma S; Kasai Y; Iino T; Yamano T; Yasumoto A; Oguchi Y; Suzuki N; Shirasaki Y; Endo T; Ito T; Hiraki K; Yamada M; Matsusaka S; Hayakawa T; Fukuzawa H; Yatomi Y; Arai F; Di Carlo D; Nakagawa A; Hoshino Y; Hosokawa Y; Uemura S; Sugimura T; Ozeki Y; Nitta N; Goda K Nat Protoc; 2019 Aug; 14(8):2370-2415. PubMed ID: 31278398 [TBL] [Abstract][Full Text] [Related]
5. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images. Mela CA; Liu Y BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628 [TBL] [Abstract][Full Text] [Related]
6. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. VerMilyea M; Hall JMM; Diakiw SM; Johnston A; Nguyen T; Perugini D; Miller A; Picou A; Murphy AP; Perugini M Hum Reprod; 2020 Apr; 35(4):770-784. PubMed ID: 32240301 [TBL] [Abstract][Full Text] [Related]
7. Digital autofocus methods for automated microscopy. Shen F; Hodgson L; Hahn K Methods Enzymol; 2006; 414():620-32. PubMed ID: 17110214 [TBL] [Abstract][Full Text] [Related]
8. Visualizing and clustering high throughput sub-cellular localization imaging. Hamilton NA; Teasdale RD BMC Bioinformatics; 2008 Feb; 9():81. PubMed ID: 18241353 [TBL] [Abstract][Full Text] [Related]
9. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications. Rabha D; Sarmah A; Nath P J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428 [TBL] [Abstract][Full Text] [Related]
11. Phenotype recognition with combined features and random subspace classifier ensemble. Zhang B; Pham TD BMC Bioinformatics; 2011 Apr; 12():128. PubMed ID: 21529372 [TBL] [Abstract][Full Text] [Related]
12. Convolutional neural network for cell classification using microscope images of intracellular actin networks. Oei RW; Hou G; Liu F; Zhong J; Zhang J; An Z; Xu L; Yang Y PLoS One; 2019; 14(3):e0213626. PubMed ID: 30865716 [TBL] [Abstract][Full Text] [Related]
13. The influence of the microscope lamp filament colour temperature on the process of digital images of histological slides acquisition standardization. Korzynska A; Roszkowiak L; Pijanowska D; Kozlowski W; Markiewicz T Diagn Pathol; 2014; 9 Suppl 1(Suppl 1):S13. PubMed ID: 25565329 [TBL] [Abstract][Full Text] [Related]
14. Detecting and Extracting Brain Hemorrhages from CT Images Using Generative Convolutional Imaging Scheme. Pandimurugan V; Rajasoundaran S; Routray S; Prabu AV; Alyami H; Alharbi A; Ahmad S Comput Intell Neurosci; 2022; 2022():6671234. PubMed ID: 35571726 [TBL] [Abstract][Full Text] [Related]
15. Intelligent Image-Activated Cell Sorting. Nitta N; Sugimura T; Isozaki A; Mikami H; Hiraki K; Sakuma S; Iino T; Arai F; Endo T; Fujiwaki Y; Fukuzawa H; Hase M; Hayakawa T; Hiramatsu K; Hoshino Y; Inaba M; Ito T; Karakawa H; Kasai Y; Koizumi K; Lee S; Lei C; Li M; Maeno T; Matsusaka S; Murakami D; Nakagawa A; Oguchi Y; Oikawa M; Ota T; Shiba K; Shintaku H; Shirasaki Y; Suga K; Suzuki Y; Suzuki N; Tanaka Y; Tezuka H; Toyokawa C; Yalikun Y; Yamada M; Yamagishi M; Yamano T; Yasumoto A; Yatomi Y; Yazawa M; Di Carlo D; Hosokawa Y; Uemura S; Ozeki Y; Goda K Cell; 2018 Sep; 175(1):266-276.e13. PubMed ID: 30166209 [TBL] [Abstract][Full Text] [Related]
16. Image3C, a multimodal image-based and label-independent integrative method for single-cell analysis. Accorsi A; Box AC; Peuß R; Wood C; Sánchez Alvarado A; Rohner N Elife; 2021 Jul; 10():. PubMed ID: 34286692 [TBL] [Abstract][Full Text] [Related]
17. A Simple Method for Creating a High-Content Microscope for Imaging Multiplexed Tissue Microarrays. Abtahi S; Gliksman NR; Heneghan JF; Nilsen SP; Muhlich JL; Copeland J; Rozbicki E; Allan C; Dudeja PK; Turner JR Curr Protoc; 2021 Apr; 1(4):e68. PubMed ID: 33822482 [TBL] [Abstract][Full Text] [Related]
18. An infrastructure for high-throughput microscopy: instrumentation, informatics, and integration. Vaisberg EA; Lenzi D; Hansen RL; Keon BH; Finer JT Methods Enzymol; 2006; 414():484-512. PubMed ID: 17110208 [TBL] [Abstract][Full Text] [Related]
19. Nanoscale single-vesicle analysis: High-throughput approaches through AI-enhanced super-resolution image analysis. Lim HJ; Kim GW; Heo GH; Jeong U; Kim MJ; Jeong D; Hyun Y; Kim D Biosens Bioelectron; 2024 Nov; 263():116629. PubMed ID: 39106689 [TBL] [Abstract][Full Text] [Related]
20. Automated stitching of microscope images of fluorescence in cells with minimal overlap. Seo JH; Yang S; Kang MS; Her NG; Nam DH; Choi JH; Kim MH Micron; 2019 Nov; 126():102718. PubMed ID: 31473399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]