These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3826685)

  • 41. Separation of overlap and collateral perfusion of ischemic canine myocardium: important considerations in the analysis of vasodilator-induced coronary steal.
    Gross GJ; Buck JD; Warltier DC; Hardman HF
    J Cardiovasc Pharmacol; 1982; 4(2):254-63. PubMed ID: 6175809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regional blood flow during isoflurane and halothane anesthesia.
    Gelman S; Fowler KC; Smith LR
    Anesth Analg; 1984 Jun; 63(6):557-65. PubMed ID: 6731876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coronary collateral reserve during exercise induced ischemia in swine.
    White FC; Roth DM; Bloor CM
    Basic Res Cardiol; 1989; 84(1):42-54. PubMed ID: 2923605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regional vasodilating properties of isoflurane in normal swine myocardium.
    Hickey RF; Cason BA; Shubayev I
    Anesthesiology; 1994 Mar; 80(3):574-81. PubMed ID: 8141453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential effects of isoflurane on regional right and left ventricular performances, and on coronary, systemic, and pulmonary hemodynamics in the dog.
    Priebe HJ
    Anesthesiology; 1987 Mar; 66(3):262-72. PubMed ID: 3826683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitric oxide does not mediate coronary vasodilation by isoflurane.
    Crystal GJ; Kim SJ; Salem MR; Khoury E; Gurevicius J
    Anesthesiology; 1994 Jul; 81(1):209-20. PubMed ID: 8042788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isoflurane causes more severe regional myocardial dysfunction than halothane in dogs with a critical coronary artery stenosis.
    Priebe HJ
    Anesthesiology; 1988 Jul; 69(1):72-83. PubMed ID: 3389567
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sevoflurane selectively increases coronary collateral blood flow independent of KATP channels in vivo.
    Kersten JR; Schmeling T; Tessmer J; Hettrick DA; Pagel PS; Warltier DC
    Anesthesiology; 1999 Jan; 90(1):246-56. PubMed ID: 9915334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protamine inhibits coronary collateral development in a canine model of repetitive coronary occlusion.
    Kersten JR; Pagel PS; Warltier DC
    Am J Physiol; 1995 Feb; 268(2 Pt 2):H720-8. PubMed ID: 7532374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of nicorandil, a new antianginal agent, and nifedipine on collateral blood flow in a chronic coronary occlusion model.
    Lamping KA; Warltier DC; Hardman HF; Gross GJ
    J Pharmacol Exp Ther; 1984 May; 229(2):359-63. PubMed ID: 6232374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of adenosine triphosphate-sensitive potassium channels in coronary vasodilation by halothane, isoflurane, and enflurane.
    Crystal GJ; Gurevicius J; Salem MR; Zhou X
    Anesthesiology; 1997 Feb; 86(2):448-58. PubMed ID: 9054263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of halothane, enflurane, and isoflurane on coronary blood flow autoregulation and coronary vascular reserve in the canine heart.
    Hickey RF; Sybert PE; Verrier ED; Cason BA
    Anesthesiology; 1988 Jan; 68(1):21-30. PubMed ID: 3337389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrous oxide worsens myocardial ischemia in isoflurane-anesthetized dogs.
    Nathan HJ
    Anesthesiology; 1988 Mar; 68(3):407-15. PubMed ID: 3344996
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coronary steal: its role in detrimental effect of isoproterenol after acute coronary occlusion in dogs.
    Cohen MV; Sonnenblick EH; Kirk ES
    Am J Cardiol; 1976 Dec; 38(7):880-8. PubMed ID: 998523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of exercise on perfusion of collateral-dependent myocardium in dogs with chronic coronary artery occlusion.
    Lambert PR; Hess DS; Bache RJ
    J Clin Invest; 1977 Jan; 59(1):1-7. PubMed ID: 830658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contrasting effects of pharmacologic vasodilation on true collateral and overlap perfusion in ischemic myocardium.
    Keelan KE; Gross GJ; Brooks HL; Warltier DC
    Gen Pharmacol; 1984; 15(6):471-7. PubMed ID: 6526259
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of cyclooxygenase blockade on blood flow through well-developed coronary collateral vessels.
    Altman J; Dulas D; Bache RJ
    Circ Res; 1992 Jun; 70(6):1091-8. PubMed ID: 1576731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cyclooxygenase blockade limits blood flow to collateral-dependent myocardium during exercise.
    Altman JD; Klassen CL; Bache RJ
    Cardiovasc Res; 1995 Nov; 30(5):697-704. PubMed ID: 8595615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acute graded hypercapnia increases collateral coronary blood flow in a swine model of chronic coronary artery obstruction.
    Arellano R; Jiang MT; O'Brien W; Hossain I; Boylen P; Demajo W; Cheng DC
    Crit Care Med; 1999 Dec; 27(12):2729-34. PubMed ID: 10628618
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pharmacological modulation of the human collateral vascular resistance in acute and chronic coronary occlusion assessed by intracoronary blood flow velocity analysis in an angioplasty model.
    Piek JJ; van Liebergen RA; Koch KT; de Winter RJ; Peters RJ; David GK
    Circulation; 1997 Jul; 96(1):106-15. PubMed ID: 9236424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.