These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38266982)
1. Interference Requirements of Type III CRISPR-Cas Systems from Thermus thermophilus. Karneyeva K; Kolesnik M; Livenskyi A; Zgoda V; Zubarev V; Trofimova A; Artamonova D; Ispolatov Y; Severinov K J Mol Biol; 2024 Mar; 436(6):168448. PubMed ID: 38266982 [TBL] [Abstract][Full Text] [Related]
2. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. Liu TY; Iavarone AT; Doudna JA PLoS One; 2017; 12(1):e0170552. PubMed ID: 28114398 [TBL] [Abstract][Full Text] [Related]
3. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Staals RH; Zhu Y; Taylor DW; Kornfeld JE; Sharma K; Barendregt A; Koehorst JJ; Vlot M; Neupane N; Varossieau K; Sakamoto K; Suzuki T; Dohmae N; Yokoyama S; Schaap PJ; Urlaub H; Heck AJ; Nogales E; Doudna JA; Shinkai A; van der Oost J Mol Cell; 2014 Nov; 56(4):518-30. PubMed ID: 25457165 [TBL] [Abstract][Full Text] [Related]
4. Regulation of cyclic oligoadenylate synthesis by the Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459 [TBL] [Abstract][Full Text] [Related]
5. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. Foster K; Kalter J; Woodside W; Terns RM; Terns MP RNA Biol; 2019 Apr; 16(4):449-460. PubMed ID: 29995577 [TBL] [Abstract][Full Text] [Related]
6. The effect of crRNA-target mismatches on cOA-mediated interference by a type III-A CRISPR-Cas system. Nasef M; Khweis SA; Dunkle JA RNA Biol; 2022 Jan; 19(1):1293-1304. PubMed ID: 36424814 [TBL] [Abstract][Full Text] [Related]
7. The structure of a Type III-A CRISPR-Cas effector complex reveals conserved and idiosyncratic contacts to target RNA and crRNA among Type III-A systems. Paraan M; Nasef M; Chou-Zheng L; Khweis SA; Schoeffler AJ; Hatoum-Aslan A; Stagg SM; Dunkle JA PLoS One; 2023; 18(6):e0287461. PubMed ID: 37352230 [TBL] [Abstract][Full Text] [Related]
8. Type III CRISPR-Cas: beyond the Cas10 effector complex. Stella G; Marraffini L Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766 [TBL] [Abstract][Full Text] [Related]
9. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Walker FC; Chou-Zheng L; Dunkle JA; Hatoum-Aslan A Nucleic Acids Res; 2017 Feb; 45(4):2112-2123. PubMed ID: 28204542 [TBL] [Abstract][Full Text] [Related]
10. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362 [TBL] [Abstract][Full Text] [Related]
11. Genetic Dissection of the Type III-A CRISPR-Cas System Csm Complex Reveals Roles of Individual Subunits. Mogila I; Kazlauskiene M; Valinskyte S; Tamulaitiene G; Tamulaitis G; Siksnys V Cell Rep; 2019 Mar; 26(10):2753-2765.e4. PubMed ID: 30840895 [TBL] [Abstract][Full Text] [Related]
12. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors. Steens JA; Salazar CRP; Staals RHJ Biochem Soc Trans; 2022 Oct; 50(5):1353-1364. PubMed ID: 36282000 [TBL] [Abstract][Full Text] [Related]
13. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012 [TBL] [Abstract][Full Text] [Related]
14. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. Hatoum-Aslan A; Maniv I; Samai P; Marraffini LA J Bacteriol; 2014 Jan; 196(2):310-7. PubMed ID: 24187086 [TBL] [Abstract][Full Text] [Related]
15. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. Pan S; Li Q; Deng L; Jiang S; Jin X; Peng N; Liang Y; She Q; Li Y RNA Biol; 2019 Sep; 16(9):1166-1178. PubMed ID: 31096876 [TBL] [Abstract][Full Text] [Related]
16. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. Ganguly C; Rostami S; Long K; Aribam SD; Rajan R J Biol Chem; 2024 Jun; 300(6):107295. PubMed ID: 38641067 [TBL] [Abstract][Full Text] [Related]
17. Type III CRISPR complexes from Thermus thermophilus. Szychowska M; Siwek W; Pawolski D; Kazrani AA; Pyrc K; Bochtler M Acta Biochim Pol; 2016; 63(2):377-86. PubMed ID: 27299480 [TBL] [Abstract][Full Text] [Related]
18. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Elmore JR; Sheppard NF; Ramia N; Deighan T; Li H; Terns RM; Terns MP Genes Dev; 2016 Feb; 30(4):447-59. PubMed ID: 26848045 [TBL] [Abstract][Full Text] [Related]
19. Structures of an active type III-A CRISPR effector complex. Smith EM; Ferrell S; Tokars VL; Mondragón A Structure; 2022 Aug; 30(8):1109-1128.e6. PubMed ID: 35714601 [TBL] [Abstract][Full Text] [Related]
20. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Liu TY; Liu JJ; Aditham AJ; Nogales E; Doudna JA Nat Commun; 2019 Jul; 10(1):3001. PubMed ID: 31278272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]