These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38267081)

  • 1. DeepPRMS: advanced deep learning model to predict protein arginine methylation sites.
    Khandelwal M; Kumar Rout R
    Brief Funct Genomics; 2024 Jul; 23(4):452-463. PubMed ID: 38267081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins.
    Chaudhari M; Thapa N; Roy K; Newman RH; Saigo H; B K C D
    Mol Omics; 2020 Oct; 16(5):448-454. PubMed ID: 32555810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lysine methylation sites using a convolutional neural network.
    Spadaro A; Sharma A; Dehzangi I
    Methods; 2024 Jun; 226():127-132. PubMed ID: 38604414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LSTMCNNsucc: A Bidirectional LSTM and CNN-Based Deep Learning Method for Predicting Lysine Succinylation Sites.
    Huang G; Shen Q; Zhang G; Wang P; Yu ZG
    Biomed Res Int; 2021; 2021():9923112. PubMed ID: 34159204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRMxAI: protein arginine methylation sites prediction based on amino acid spatial distribution using explainable artificial intelligence.
    Khandelwal M; Rout RK
    BMC Bioinformatics; 2023 Oct; 24(1):376. PubMed ID: 37794362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H2Opred: a robust and efficient hybrid deep learning model for predicting 2'-O-methylation sites in human RNA.
    Pham NT; Rakkiyapan R; Park J; Malik A; Manavalan B
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38180830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Fold Recognition From Sequences Using Convolutional and Recurrent Neural Networks.
    Villegas-Morcillo A; Gomez AM; Morales-Cordovilla JA; Sanchez V
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2848-2854. PubMed ID: 32750896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PRmePRed: A protein arginine methylation prediction tool.
    Kumar P; Joy J; Pandey A; Gupta D
    PLoS One; 2017; 12(8):e0183318. PubMed ID: 28813517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey on protein-DNA-binding sites in computational biology.
    Zhang Y; Bao W; Cao Y; Cong H; Chen B; Chen Y
    Brief Funct Genomics; 2022 Sep; 21(5):357-375. PubMed ID: 35652477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSMFN: a fused spatial and sequential deep learning model for methylation site prediction.
    Lumbanraja FR; Mahesworo B; Cenggoro TW; Sudigyo D; Pardamean B
    PeerJ Comput Sci; 2021; 7():e683. PubMed ID: 34541311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepGpgs: a novel deep learning framework for predicting arginine methylation sites combined with Gaussian prior and gated self-attention mechanism.
    Zhou H; Tan W; Shi S
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36694944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational identification of protein methylation sites through bi-profile Bayes feature extraction.
    Shao J; Xu D; Tsai SN; Wang Y; Ngai SM
    PLoS One; 2009; 4(3):e4920. PubMed ID: 19290060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection.
    Ahmad S; Ullah T; Ahmad I; Al-Sharabi A; Ullah K; Khan RA; Rasheed S; Ullah I; Uddin MN; Ali MS
    Comput Intell Neurosci; 2022; 2022():8141530. PubMed ID: 35785076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components.
    Tahir M; Tayara H; Chong KT
    J Theor Biol; 2019 Mar; 465():1-6. PubMed ID: 30590059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEEP-EP: Identification of epigenetic protein by ensemble residual convolutional neural network for drug discovery.
    Ali F; Almuhaimeed A; Khalid M; Alshanbari H; Masmoudi A; Alsini R
    Methods; 2024 Jun; 226():49-53. PubMed ID: 38621436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifactorial feature extraction and site prognosis model for protein methylation data.
    Khandelwal M; Kumar Rout R; Umer S; Mallik S; Li A
    Brief Funct Genomics; 2023 Jan; 22(1):20-30. PubMed ID: 36310537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of methylation sites using the composition of K-spaced amino acid pairs.
    Zhang W; Xu X; Yin M; Luo N; Zhang J; Wang J
    Protein Pept Lett; 2013 Aug; 20(8):911-7. PubMed ID: 23276225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.