These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38267084)

  • 1. Integration tools for scRNA-seq data and spatial transcriptomics sequencing data.
    Yan C; Zhu Y; Chen M; Yang K; Cui F; Zou Q; Zhang Z
    Brief Funct Genomics; 2024 Jan; ():. PubMed ID: 38267084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication.
    Cheng C; Chen W; Jin H; Chen X
    Cells; 2023 Jul; 12(15):. PubMed ID: 37566049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics.
    Shen X; Zhao Y; Wang Z; Shi Q
    Lab Chip; 2022 Dec; 22(24):4774-4791. PubMed ID: 36254761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Roadmap for Selecting and Utilizing Optimal Features in scRNA Sequencing Data Analysis for Stem Cell Research: A Comprehensive Review.
    Alani M; Altarturih H; Pars S; Al-Mhanawi B; Wolvetang EJ; Shaker MR
    Int J Stem Cells; 2024 Mar; ():. PubMed ID: 38531607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy.
    Ding S; Chen X; Shen K
    Cancer Commun (Lond); 2020 Aug; 40(8):329-344. PubMed ID: 32654419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ScRNA-seq and ST-seq in liver research.
    He J; Deng C; Krall L; Shan Z
    Cell Regen; 2023 Feb; 12(1):11. PubMed ID: 36732412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape.
    Bawa G; Liu Z; Yu X; Tran LP; Sun X
    Trends Plant Sci; 2024 Feb; 29(2):249-265. PubMed ID: 37914553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data.
    Zhang T; Wu Z; Li L; Ren J; Zhang Z; Wang G
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Advancement and Application of the Single-Cell Transcriptome in Biological and Medical Research.
    Huang K; Xu Y; Feng T; Lan H; Ling F; Xiang H; Liu Q
    Biology (Basel); 2024 Jun; 13(6):. PubMed ID: 38927331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell RNA Sequencing Technology Landscape in 2023.
    Qu HQ; Kao C; Hakonarson H
    Stem Cells; 2024 Jan; 42(1):1-12. PubMed ID: 37934608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information.
    Liu Z; Sun D; Wang C
    Genome Biol; 2022 Oct; 23(1):218. PubMed ID: 36253792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models.
    Gao D; Ning J; Liu G; Sun S; Dang X
    Front Genet; 2022; 13():893522. PubMed ID: 35692845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data.
    Maseda F; Cang Z; Nie Q
    Front Genet; 2021; 12():636743. PubMed ID: 33833776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.
    Longo SK; Guo MG; Ji AL; Khavari PA
    Nat Rev Genet; 2021 Oct; 22(10):627-644. PubMed ID: 34145435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory epithelial cell types, states and fates in the era of single-cell RNA-sequencing.
    Dudchenko O; Ordovas-Montanes J; Bingle CD
    Biochem J; 2023 Jul; 480(13):921-939. PubMed ID: 37410389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seq-Scope Protocol: Repurposing Illumina Sequencing Flow Cells for High-Resolution Spatial Transcriptomics.
    Kim Y; Cheng W; Cho CS; Hwang Y; Si Y; Park A; Schrank M; Hsu JE; Xi J; Kim M; Pedersen E; Koues OI; Wilson T; Jun G; Kang HM; Lee JH
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.