These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38267678)

  • 1. The persistence of memory in ionic conduction probed by nonlinear optics.
    Poletayev AD; Hoffmann MC; Dawson JA; Teitelbaum SW; Trigo M; Islam MS; Lindenberg AM
    Nature; 2024 Jan; 625(7996):691-696. PubMed ID: 38267678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes.
    Wang C; Xu BB; Zhang X; Sun W; Chen J; Pan H; Yan M; Jiang Y
    Small; 2022 Oct; 18(43):e2107064. PubMed ID: 35373539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-driven ultrafast impedance spectroscopy for measuring complex ion hopping processes.
    Pham KH; Lin AK; Spear NA; Cushing SK
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39037294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study.
    Morgan BJ
    R Soc Open Sci; 2017 Nov; 4(11):170824. PubMed ID: 29291073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic ion migration in solid electrolytes revealed by terahertz time-domain spectroscopy.
    Morimoto T; Nagai M; Minowa Y; Ashida M; Yokotani Y; Okuyama Y; Kani Y
    Nat Commun; 2019 Jun; 10(1):2662. PubMed ID: 31209215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hopping Rate and Migration Entropy as the Origin of Superionic Conduction within Solid-State Electrolytes.
    Li X; Liu H; Zhao C; Kim JT; Fu J; Hao X; Li W; Li R; Chen N; Cao D; Wu Z; Su Y; Liang J; Sun X
    J Am Chem Soc; 2023 May; 145(21):11701-11709. PubMed ID: 37195646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, morphological, electrical, and dielectric properties of Na
    Ben Bechir M; Akermi M
    RSC Adv; 2024 Mar; 14(13):9228-9242. PubMed ID: 38505384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic Conduction in Polymer-Based Solid Electrolytes.
    Li Z; Fu J; Zhou X; Gui S; Wei L; Yang H; Li H; Guo X
    Adv Sci (Weinh); 2023 Apr; 10(10):e2201718. PubMed ID: 36698303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gyroid Liquid Crystals as Quasi-Solid-State Electrolytes Toward Ultrastable Zinc Batteries.
    Su L; Lu F; Li Y; Wang Y; Li X; Zheng L; Gao X
    ACS Nano; 2024 Mar; 18(10):7633-7643. PubMed ID: 38411092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous High Ionic Conductivity and Lithium-Ion Transference Number in Single-Ion Conductor Network Polymer Enabling Fast-Charging Solid-State Lithium Battery.
    Wang Y; Sun Q; Zou J; Zheng Y; Li J; Zheng M; Liu Y; Liang Y
    Small; 2023 Oct; 19(43):e2303344. PubMed ID: 37376809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries.
    Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M
    ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charged Block Copolymers: From Fundamentals to Electromechanical Applications.
    Min J; Barpuzary D; Ham H; Kang GC; Park MJ
    Acc Chem Res; 2021 Nov; 54(21):4024-4035. PubMed ID: 34559505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes.
    Kondou S; Thomas ML; Mandai T; Ueno K; Dokko K; Watanabe M
    Phys Chem Chem Phys; 2019 Feb; 21(9):5097-5105. PubMed ID: 30762863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes.
    Deng Y; Eames C; Chotard JN; Lalère F; Seznec V; Emge S; Pecher O; Grey CP; Masquelier C; Islam MS
    J Am Chem Soc; 2015 Jul; 137(28):9136-45. PubMed ID: 26118319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the Li-ion conduction behavior in the Li
    Paulus MC; Graf MF; Harks PPRML; Paulus A; Schleker PPM; Notten PHL; Eichel RA; Granwehr J
    J Magn Reson; 2018 Sep; 294():133-142. PubMed ID: 30041071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Room Temperature Ionic Conductivity of Na
    Heo E; Wang JE; Yun JH; Kim JH; Kim DJ; Kim DK
    Inorg Chem; 2021 Aug; 60(15):11147-11153. PubMed ID: 34279910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect-driven anomalous transport in fast-ion conducting solid electrolytes.
    Poletayev AD; Dawson JA; Islam MS; Lindenberg AM
    Nat Mater; 2022 Sep; 21(9):1066-1073. PubMed ID: 35902748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries.
    Tian X; Yi Y; Yang P; Liu P; Qu L; Li M; Hu YS; Yang B
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4001-4010. PubMed ID: 30608130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.